Effect of Hardness and Position on Wear Behavior of Steel Pairs

2012 ◽  
Vol 263-266 ◽  
pp. 95-98
Author(s):  
Zhu Jun Li ◽  
Zheng Wu Jiang ◽  
Huan Wei Zhou

In this paper, the effect of hardness and position on the 40CrNiMoA steel and 18Cr2Ni4WA steel friction pairs’ friction coefficient and wear volume were studied without lubrication, at room temperature. The results show that: Under test conditions, the fluctuation in the friction coefficient is bigger, when the up specimen is the harder 18Cr2Ni4WA steel. And when the up specimen is the softer 40CrNiMoA steel, the fluctuation in the friction coefficient is relatively small. When the up specimen is the 40CrNiMoA steel, the hardness of 40CrNiMoA steel is a relatively small impact on the average value of the coefficient of friction.When the up specimen is the softer 40CrNiMoA steel, the coefficient of friction is relatively larger than that when the up specimen is the harder 18Cr2Ni4WA steel. The wear volumes is relate to the position of friction pair. When the up specimen is the harder 18Cr2Ni4WA steel, both sides of the friction pairs has the same wear volumes when the hardness of 40CrNiMoA steel is about 43HRC. When the up specimen is softer 40CrNiMoA steel, and its hardness is about 54HRC, the wear volumes curves of two materials intersect.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Hanfei Guo ◽  
Jianjun Qiao ◽  
Xiaoxue Liu ◽  
Zhixin Fan

PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.


2002 ◽  
Vol 17 (2) ◽  
pp. 492-501 ◽  
Author(s):  
Eric Fleury ◽  
Yu-Chan Kim ◽  
Jae-Soo Kim ◽  
Hyo-Sok Ahn ◽  
Sang-Mok Lee ◽  
...  

The sliding friction and wear performance of Al–Ni–Co–Si quasicrystalline coatings deposited by the high-velocity oxy-fuel technique were investigated under dry sliding conditions. This study indicated that changes in the imposed sliding test conditions modified the friction and wear behavior of quasicrystalline coatings. Qualitative analysis of the contact interface and wear debris were performed with the aim of understanding the role of the third body on the friction and wear processes. The dependence of the coefficient of friction on the sliding velocity and counterpart material was explained by the stick-slip behavior. It was also shown that test conditions favorable for the formation of thick intermediate layers and the densification of the coating subsurface led to low wear rates. Large cylindrical particles, formed by agglomeration of small wear debris, were suggested as a beneficial factor for the reduction of the coefficient of friction.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1033
Author(s):  
Wolfgang Tillmann ◽  
Alexander Fehr ◽  
Dominic Stangier

AlCrWxSiN thin films (0 ≤ x ≤ 17.1 at.%) were synthesized by means of a hybrid magnetron sputtering process, merging direct current (DC) as well as tungsten high power impulse magnetron sputtering (HiPIMS) supplies. The influences of increasing the tungsten contents on the structural as well as the friction and wear behavior at room and high temperatures (500 °C) were elaborated. As a reference, a W61.4N38.6 system served to analyze synergetic effects on the oxidation behavior. Increased tungsten contents in AlCrWxSiN resulted in more distinctive (200)-, (202)-, and (311)- crystal orientations. A W/Cr ratio of ~1 could be correlated with a denser film growth, the highest hardness (24.3 ± 0.7 GPa), and a significantly decreased wear coefficient (<0.3 × 10−5 mm3/Nm). Tribological tests performed at room temperature revealed that the coefficient of friction decreased with higher tungsten contents to µ~0.35. In contrast, at elevated temperatures, the coefficient of friction increased with higher W concentrations due to spotty oxidations in the wear track, which resulted in a locally increased surface roughness. Finally, a phase transformation of the WN film to m-WO3 did not contribute to a friction reduction at 500 °C.


2011 ◽  
Vol 291-294 ◽  
pp. 34-40
Author(s):  
Hua Tang ◽  
Wen Jing Li ◽  
Chang Sheng Li

The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were prepared using powder metallurgic method. The crystal structure and morphology of the as-synthesized samples were characterized by XRD and SEM. The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were found to compose of superconductor phase and Ag phase. The tribological properties from ultra-low temperature to room temperature of the composites were studied by pin-on-disk friction test. It was found that the friction coefficients of pure YBa2Cu3Ox(YBCO) and Bi2Sr2CaCu2Ox(BSCCO) were both dropped abruptly when the temperature cooled below the superconducting transition temperature. At room temperature, the friction coefficient of pure YBa2Cu3Oxis 0.68~0.95, when mixing 15wt% Ag, the friction coefficient of the sample decreased to the lowest value 0.11. The friction coefficient of pure Bi2Sr2CaCu2Ox is 0.15~0.17, When Ag content reach 10wt%, the coefficient was lowest (average value is 0.13). The addition of appropriate amount of Ag obviously improve the tribological property of YBCO, while only slightly meliorate that of BSCO. On the other hand, the YBCO/Ag composites exhibit better tribological properties than BSCCO/Ag composites at higher load under the same experimental condition.


Author(s):  
S.V Lesniak ◽  
◽  
O.V Lesniak ◽  
D.V Baryshnikov

It is shown that the coefficient of safety friction clutches is not enough to transfer the nominal load of the machine without slipping in cases when the coefficient of friction decreases to a minimum value. It is established that the existing theory of calculation and design of safety clutches contains an erroneous position that the nominal torque of the machine is constant and does not change in time. This leads to an increase in the probability of occurrence of unmotivated actuations of safety friction clutches with a decrease in the coefficient of friction below the average value.


2021 ◽  
Vol 63 (3) ◽  
pp. 259-265
Author(s):  
Halil Kılıç ◽  
Cenk Mısırlı ◽  
İbrahim Mutlu

Abstract This paper presents the findings of comparative research conducted to find out the braking performance of a Mo/NiCrBSi coated automobile brake disc. The friction and wear behavior of the Mo/NiCrBSi coating (CD) used for the disc material was evaluated using a laboratory scale disc-pad dynamometer and compared with a reference disc (RD). The coating was deposited by means of the atmospheric plasma spray process on a grey cast iron substrate. Braking tests were performed according to the SAE-J2430 test standard. Disc microstructures were characterized by SEM and XRD. It was found that the bonding strength was good with an infinite rating between the accumulated coating layer and the substrate. The results show that the coated brake disc has a comparable coefficient of friction and that the amount of wear is lower than that of the reference disc. The addition of ductile phases to the disc coating was beneficial in reducing the coefficient of friction to an acceptable degree and also effectively improving wear resistance.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 448 ◽  
Author(s):  
Jichun Xing ◽  
Huajun Li ◽  
Dechun Liu

Tactile feedback technology has important development prospects in interactive technology. In order to enrich the tactile sense of haptic devices under simple control, a piezoelectric haptic feedback device is proposed. The piezoelectric tactile feedback device can realize tactile changes in different excitation voltage amplitudes, different excitation frequencies, and different directions through the ciliary body structure. The principle of the anisotropic vibration of the ciliary body structure was analyzed here, and a tactile model was established. The equivalent friction coefficient under full-coverage and local-coverage of the skin of the touch beam was deduced and solved. The effect of system parameters on the friction coefficient was analyzed. The results showed that in the full-coverage, the tactile effect is mainly affected by the proportion of the same directional ciliary bodies and the excitation frequency. The larger the proportion of the same direction ciliary body is, the smaller the coefficient of friction is. The larger the excitation frequency is, the greater the coefficient of friction is. In the local-coverage, the tactile effect is mainly affected by the touch position and voltage amplitude. When changing the touch pressure, it has a certain effect on the change of touch, but it is relatively weak. The experiment on the sliding friction of a cantilever touch beam and the experiment of human factor were conducted. The experimental results of the sliding friction experiment are basically consistent with the theoretical calculations. In the human factor experiment, the effects of haptic regulation are mainly affected by voltage or structure of the ciliary bodies.


2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


1972 ◽  
Vol 94 (1) ◽  
pp. 12-18 ◽  
Author(s):  
M. T. Lavik ◽  
B. D. McConnell ◽  
G. David Moore

Results are presented for the bonding of thin, sintered, fluoride films of BaF2 and CaF2 with mono-aluminum phosphate. Friction and wear behavior of these films has been defined in terms of film compositional changes, film curing procedures, and substrate variations when subjected to varying levels of temperature and load. Mono-aluminum phosphate was found to greatly enhance the adhesion of the sintered fluoride film. There was a strong dependence of wear life at 1000 deg F on the mono-aluminum phosphate content of the film. Films containing 6 vol. percent phosphate appear to be near optimum and exhibited wear lives of 1,000,000 load cycles under sliding conditions in a dual rub-shoe device with friction coefficient levels in the order of 0.10 to 0.20. Near-optimum values were determined for cure temperature (950 deg C), and surface finish (23 μ in. rms) on rhodium-plated substrates. Graphite and gold were added to the aluminum phosphate bonded BaF2: CaF2 films. Both additives were found to lower the friction coefficient at room temperature.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Amod Kashyap ◽  
A. P. Harsha ◽  
Harish C. Barshilia ◽  
Venkataramana Bonu ◽  
Praveen Kumar V. ◽  
...  

Abstract Titanium (Ti)/titanium nitride (TiN) ultrathin multilayer coating was deposited on 100Cr6 substrates to investigate the friction and wear behavior in the presence of paraffin oil as a lubricant. The coating architecture was designed by adding thick stress absorbing layers (SAL ∼320 nm) in between the ultrathin Ti/TiN (3.5/4 nm) multilayer structure. The SAL reduces the residual stress in the coating. The coating had a NaCl type of structure, and X-ray diffraction (XRD) results showed the preferential crystallographic orientation of TiN along [111] direction. The tribological properties of the nanostructured coating were evaluated under reciprocating sliding conditions at varying loads (2 and 7 N), and temperature (30 and 100 °C) against 100Cr6 steel balls using paraffin oil as a lubricant. There was no considerable change in the coefficient of friction (COF) at different testing parameters. However, there was a significant drop in wear volume at high-temperature testing conditions. The worn tracks were analyzed for their morphology and elemental composition through scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), and Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document