Study of Tribological Properties of Multilayer Ti/TiN Coating Containing Stress Absorbing Layers

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Amod Kashyap ◽  
A. P. Harsha ◽  
Harish C. Barshilia ◽  
Venkataramana Bonu ◽  
Praveen Kumar V. ◽  
...  

Abstract Titanium (Ti)/titanium nitride (TiN) ultrathin multilayer coating was deposited on 100Cr6 substrates to investigate the friction and wear behavior in the presence of paraffin oil as a lubricant. The coating architecture was designed by adding thick stress absorbing layers (SAL ∼320 nm) in between the ultrathin Ti/TiN (3.5/4 nm) multilayer structure. The SAL reduces the residual stress in the coating. The coating had a NaCl type of structure, and X-ray diffraction (XRD) results showed the preferential crystallographic orientation of TiN along [111] direction. The tribological properties of the nanostructured coating were evaluated under reciprocating sliding conditions at varying loads (2 and 7 N), and temperature (30 and 100 °C) against 100Cr6 steel balls using paraffin oil as a lubricant. There was no considerable change in the coefficient of friction (COF) at different testing parameters. However, there was a significant drop in wear volume at high-temperature testing conditions. The worn tracks were analyzed for their morphology and elemental composition through scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), and Raman spectroscopy.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4502
Author(s):  
Ashish K. Kasar ◽  
Pradeep L. Menezes

Wear and friction properties of Al2O3 composite reinforced with in-situ formed aluminum borate (9Al2O3·2B2O3) and hexa-boron nitride (h-BN) have been investigated. The initial constituents for the composites were Al2O3, AlN, and H3BO3. The H3BO3 was used as a source of B2O3, where B2O3 reacted with AlN and Al2O3 to form in-situ h-BN and 9Al2O3·2B2O3. Based on the thermodynamic calculation and phase transformation, four different compositions were selected. First, the powders were mixed by ball milling followed by compaction at 10 MPa. The compacted pellets were sintered at 1400 °C in vacuum. The composites were characterized using X-ray diffraction followed by hardness measurement and reciprocating sliding test against alumina and steel balls. The X-ray diffraction results revealed the formation of in situ phases of 9Al2O3·2B2O3 and h-BN that improved the tribological properties. By comparing the tribological performance of different composites, it was found that the hard 9Al2O3·2B2O3 phase maintains the wear resistance of composites, whereas the coefficient of friction is highly dependent on the counter ball. Against alumina ball, the lowest coefficient of friction was observed for the composites with maximum h-BN concentration and minimum aluminum borate concentration, whereas the opposite trend was observed against the steel ball.


2014 ◽  
Vol 941-944 ◽  
pp. 280-283
Author(s):  
Xiao Yang Wang ◽  
Hong Qiang Ru

SiC particle-reinforced Cu-Fe based braking materials were fabricated by the P/M hot pressing method. The phase composition, microstructure and the worn surface of the composite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).The tribological properties were evaluated using a disk-on-disk type laboratory scale dynamometer. Results indicate that the friction coefficient is 0.42 in 6800rpm, 0.7MPa. With the increase of rotation speeds the coefficient of friction and stable rate were decreased.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Vitali Podgursky ◽  
Maxim Yashin ◽  
Taivo Jõgiaas ◽  
Mart Viljus ◽  
Asad Alamgir ◽  
...  

Comparative analysis of dry sliding wear behavior of nanocrystalline diamond (NCD) films and NCD films coated with a thin Al2O3 layer (Al2O3/NCD) is the main goal of the present study. Plasma-enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD) methods were used to prepare the NCD and alumina films, respectively. Sliding wear tests were conducted at room temperature (RT), 300 and 450 °C in air. Independent of type of specimen, superlubricating behavior with the coefficient of friction (COF) in the range of 0.004‒0.04 was found for the tests at 300 °C. However, the COF value measured on the Al2O3/NCD films in the tests at 450 °C is lower than that for the NCD film. A relatively short run-in period and a stable COF value of about 0.15 were observed at this temperature for the Al2O3/NCD films. The width of the wear scars measured on the Al2O3/NCD films after the tests at 450 °C is significantly smaller in comparison with the NCD film. The apparent wear volume of the wear scar on the NCD film tested at 450 °C was noticeably higher than that on the Al2O3/NCD films.


2018 ◽  
Vol 70 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Alaa Mohamed ◽  
Mohamed Hamdy ◽  
Mohamed Bayoumi ◽  
Tarek Osman

Purpose To enhance the tribological properties of nanogrease, one of the new technologies was used to synthesize a nanogrease having carbon nanotubes (CNTs) nanoparticles (NPs) with different concentrations. The microstructures of the synthesized NPs were characterized and evaluated by x-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Tribological properties of the nanogrease were evaluated using a four-ball tester. The worn surface of four steel balls was investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Design/methodology/approach Grease was dissolved in chloroform (10 Wt.%), at 25 °C for 1 h. In parallel, functionalized CNTs with different volume concentrations (0.5, 1, 2 and 3 Wt.%) were dispersed in N, N-dimethylformamide. The mixture was stirred for 15 min and then sonicated (40 kHz, 150 W) for 30 min. After that, the mixture was added to the grease solution and magnetically stirred for 15 min and then sonicated for 2 h. Findings The results suggested that CNTs can enhance the antiwear and friction properties of nanogrease at 0.5 Wt.% CNTs to about 57 and 48 per cent, respectively. In addition, the weld load of the base oil containing 0.5 Wt.% CNTs was improved by 17 per cent compared with base grease. Originality/value This work describes the inexpensive and simple fabrication of nanogrease for improving the properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.


2021 ◽  
pp. 1-13
Author(s):  
Jian Liu ◽  
Xudong Sui ◽  
Zhen Yan ◽  
Guosheng Huang ◽  
Junying Hao

Abstract Cr doped MoS2 films were deposited by magnetron sputtering. The tribological properties of Cr doped MoS2 films under vacuum (VC) and air (AR) environments were investigated. The results show that Cr doped MoS2 film with Cr target power of 0.2 A (0.2 A Cr:MoS2 film) exhibits low friction coefficient and long wear life under both VC and AR environments. The chemical compositions of the films were analyzed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). With the increases of Cr target power, the content of Cr increases. The cross-sectional FESEM morphologies show that the structure of the films changed from granular particles to column when the Cr target power increases from 0.2A to 0.4A. The wear mechanism has also been discussed based on the characteristics of worn surface. The 0.4 A Cr:MoS2 film has the lowest wear volume among these films, which can be attributed to the compact microstructure. The bandgap of Cr doped MoS2 films were measured by XPS and the tribological performance of the film is found to be best when there is a modest bandgap. It can be speculated that the tribological performance of Cr doped MoS2 films are closely related to the width of bandgap.


2016 ◽  
Vol 68 (5) ◽  
pp. 577-585 ◽  
Author(s):  
Zhengfeng Cao ◽  
Yanqiu Xia ◽  
Xiangyu Ge

Purpose The purpose of this paper is to synthesize a new kind of conductive grease which possesses a prominent conductive capacity and good tribological properties. Design/methodology/approach A two-step method was used to prepare complex lithium-based grease. Ketjen black (KB), acetylene black (AB) and carbon black (CB) were characterized by transmission electron microscope and used as lubricant additives to prepare conductive greases. Conductive capacity was evaluated by a conductivity meter, a surface volume resistivity meter and a circuit resistance meter. Tribological properties were investigated by a reciprocating friction and wear tester (MFT-R4000). The worn surfaces were analyzed by a scanning electron microscope, Raman spectroscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscope. Findings The conductive grease prepared with KB has a prominent conductive capacity at room temperature, 100°C and 150°C. Further, this conductive grease also possesses better tribological properties than AB and KB greases. When the concentration of KB is 1.8 Wt.%, the coefficient of friction and wear width reduced by 11 and 14 per cent, respectively. Originality/value This work is a new application of nanometer KB as a lubricant additive in grease, which provides a direction for preparing conductive grease. The conductivity and tribology experiments have been carried out though the variation of experiment conductions.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Sooraj S. Rawat ◽  
A. P. Harsha ◽  
Deepak P. Agarwal ◽  
Sangita Kumari ◽  
Om P. Khatri

In the present study, lubricating grease was developed with paraffin oil and 12-lithium hydroxy stearate metal soap as a thickening agent. MoS2 nanosheets were synthesized by hydrothermal method and functionalized with 1-octadecanethiol (i.e., MoS2-ODT). The MoS2 and MoS2-ODT nanosheets were dispersed in the grease with different concentrations to evaluate its tribological performance. Tribological results unveiled that the addition of MoS2 nanosheets in grease appreciably reduced the coefficient of friction and mean wear volume of tribo-interfaces as compared with pure grease. Energy dispersive spectroscopy (EDS) spectrum revealed the deposition of MoS2 on the worn surface and confirmed a thin tribo-film which protects steel tribo-pair against wear.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540021
Author(s):  
Jin Cheol Ha ◽  
Yun-Hae Kim ◽  
Myeong-Hoon Lee ◽  
Kyung-Man Moon ◽  
Se-Ho Park

This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H 2 SO 4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H 2 SO 4 concentration because of the space made between resins and reinforced materials.


Author(s):  
Pranay Asthana ◽  
Hong Liang

In this study the wear behavior of rail road steel under rolling with sliding and pure sliding conditions was investigated. Experiments were conducted using a modified linear reciprocating tribometer. Friction and wear were estimated against different conditions. Surface characterization techniques include a scanning electron microscope (SEM) with attached energy dispersive X-ray (EDX) for wear and tribochemical wear studies. It was found that rolling with sliding provided higher friction and wear than pure sliding. The addition of crystalline hydrated sodium borate (Na2B4O7-10H2O) increased friction in both contact conditions, while there was a significant decrease in the wear volume. This research proposes new friction and wear mechanisms.


Sign in / Sign up

Export Citation Format

Share Document