Effect of Permeability Coefficient of Reservoir Bank Slope on Pile Displacement and Ground Deformation

2013 ◽  
Vol 275-277 ◽  
pp. 304-309
Author(s):  
Guo Dong Zhang ◽  
Peng Du ◽  
Qing Ling Yi ◽  
Wen Luo ◽  
Xiao Hu Yu

Due to effect of reservoir water, the deformation mechanism of reservoir bank slope has a great of influence to the buildings which locate on the bank slope. Considering the changes of permeability coefficient of ground, the deformation characteristics of bank slope ground and pile are analyzed based on the method of pile-soil interaction under the condition that the reservoir water level changing speed is invariable. The results revealed that the larger horizontal displacement of the ground and piles happened when the ground has a smaller permeability coefficient, and the larger settlement of the ground and pile happened, especially the pile which has greater differential settlement when the permeability coefficient of ground is larger. The results have certain reference significance on the safety evaluation and design of buildings which locate on reservoir bank slope.

2011 ◽  
Vol 255-260 ◽  
pp. 3620-3625
Author(s):  
Hai Wei ◽  
Hua Shu Yang ◽  
Liang Wu ◽  
Yue Gui

There are many factors, such as climate, flood, material, geology, structure, management, to influence dam safety. So dam safety evaluation, involving many fields, is very complicated, and very difficult to establish mathematic model for assessment. Artificial Neural Network (ANN) has many obvious advantages to deal with these problems influenced by multi-factor, consequently is widely used in engineering fields. This paper considered water level, temperature, main factors influencing dam deformation, as random variables, employed ANN and statistical model to establish performance function of dam hidden trouble deformation and abnormal deformation. Then reliability theory was used to analyze dam safety reliability and sensitivity. The results show that temperature has great effect on probability of dam hidden trouble deformation and abnormal deformation than reservoir water level, due to great variability of temperature. Change of Reliability index of dam is contrary to reservoir water level. Temperature, especially average temperature in 10 days and 5 days, has great effect on sensitivity of reliability index than water level.


Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 450 ◽  
Author(s):  
Faming Huang ◽  
Xiaoyan Luo ◽  
Weiping Liu

It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.


Author(s):  
Bui Thi Kieu Trinh ◽  
Xiao Yangxuan ◽  
Chinh Van Doan ◽  
Do Xuan Khanh ◽  
Tran The Viet ◽  
...  

Horizontal displacement of Hoa Binh dam in operation phase is analyzed and then forecasted by using three methods: the multi-regression model (MTR), the Seasonal Integrated Auto-regressive Moving Average (SARIMA) model and the Back-propagation Neural Network (BPNN) model. The monitoring data of the Hoa Binh Dam in 137 monitoring periods, including horizontal displacement, time, reservoir water level and air temperature, are used for the experiments. The results indicate that all of these three methods can describe the real trend of dam deformation and achieve the required accuracy in short-term forecast up to 9 months. In addition, forecast results of BPNN have the highest stability and accuracy.      


2011 ◽  
Vol 368-373 ◽  
pp. 230-233 ◽  
Author(s):  
Shao Jun Li ◽  
Fan Zhen Meng ◽  
Jing Chen ◽  
Hong Min

The mechanical properties of interface between soil-macadam aggregate and anti-sliding concrete pile are very important for the reinforcement design and safety evaluation of accumulative landslide in the reservoir area of Three Gorges. Soil-macadam aggregate is a complex geomaterial whose properties are totally different with soil or rock. Based on a practical landslide suffering the influence of reservoir water level change and seasonal rainfall, a series of direct shear tests are conducted to investigate the interface mechanical properties between soil-macadam aggregate and concrete pile. Accordingly, the relationship between shear strength parameters and water contents and macadam ratios is presented. The change characteristics of mechanical properties of interface are discussed. The results indicate that shearing strength, inner friction angle and cohesion decrease with less water content. However, as the increment of macadam ratios, the cohesion will decrease gradually, but the shear strength and inner friction angle of interface decrease firstly and then increase after a critical value, the change trend obeys parabolic relation.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yinchai Zhang ◽  
Huafeng Deng ◽  
Wei Wang ◽  
Lingling Duan ◽  
Yongyan Zhi ◽  
...  

During the reservoir operation process, the long-term security and stability of the bank slope is affected by dynamic response characteristics of its seismic action directly. Aimed at the typical bank slope existing in the actual reservoir environment, an experiment considering reservoir water level fluctuation and soaking-air-drying cyclic water-rock interaction has been designed and conducted while the cyclic loading test was performed in different water-rock cycles. Research results indicate the following: Firstly, in the process of water-rock interaction, the dynamic characteristics of sandstone show evident degradation trend, with the increase of the damping ratio and Poisson’s ratio and decrease of dynamic elastic modulus, and the former six water-rock cycle degradation effects are particularly obvious. Secondly, the numerical analog computation analysis of dynamic response in typical bank slope shows that as the water-rock interaction period is increased, the dynamic response of the slope hydro-fluctuation belt zone increases gradually, while the other parts weaken. Thirdly, under the long-term water-rock interaction process, the hydro-fluctuation belt zone gradually becomes a “soft layer” which is sensitive to the earthquake effect and dynamic response, resulting in a direct influence on long-term seismic performance of the bank slope. Therefore, it is necessary to make better protection for the bank slope hydro-fluctuation belt zone.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 201 ◽  
Author(s):  
Shuyang Yu ◽  
Xuhua Ren ◽  
Jixun Zhang ◽  
Haijun Wang ◽  
Junlei Wang ◽  
...  

Evaluation of slope stability under water level fluctuations is an important topic in the Three Gorges Reservoir (TGR) in China. However, most of the previous studies regarded slope soil as isotropic material, or only considered the influence of anisotropy ratio (kr = kx/ky) but ignored the anisotropy direction (α). Meanwhile, the pore pressure–stress coupling was rarely considered in the previous numerical simulations. In the present study, the SIGMA/W and SLOPE/W modules in Geo-studio are utilized to carry out the numerical simulation of Caipo slope under the drawdown of the reservoir water level, and the anisotropy ratio (kr) as well as the anisotropy direction (α) of two kinds of soils (clay and sand) are included. Results show that the anisotropy ratio kr and anisotropy direction α decrease the infiltration capacity of the soil, which increases the infiltration line hysteretic elevation (ILHE) as well as maximum horizontal displacement (MHD), and reduces the minimum safety factor (MSF). The slope toe firstly fails with the drawdown of water level. The influence of reservoir water level drop on seepage, deformation, and stability of the sand slope is less than that of the clay slope. For the sandy soil slope, it is not only necessary to consider the influence of kr, but also the influence of α. For the soil slope, we can only consider α in order to simplify calculation.


2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Siswanto Siswanto ◽  
Suprapto Suprapto ◽  
Sri Sangkawati Sachro

Rockfill dams have better stability than homogeneous soil dams. It allows to design the dam more slim with a higher slope. The disadvantage of rockfill dam is in the core zone as an impermeable zone. Zoned vertical core rockfill dam is a combination of various material properties. Geometry and drainage design will affect the seepage and phreatic line properties that occur. Numerical modeling and calculations are used to calculate the seepage profile more accurately. The combination of the parameters of the permeability coefficient (K), reservoir water level (Δh) and the length of the seepage path (L) can be used to determine the relationship between parameters with the same unit. 2D modeling take into account saturated/unsaturated conditions with steady state on each parameter. This study uses the Jatibarang-Indonesia dam as a basic model. The seepage profile at condition K1 (k = 1x10-5cm/sec) is q/k = -0.0018 (h2/L)2 + 1.3496h2/L + 53.241 and the seepage profile K2 (k=1x10-7cm/s) is q/k = -0.1521 (h2/L)2 + 90.402h2/L + 5480.2. This equations can be used to estimate seepage that occurs in a dam of other rock fill zoned vertical core dam based on the permeability coefficient value (K) more practically for all values of Δh and L reviewed.Keywords: Seepage, Rockfill Dam, Permeability, FEM, Numerical Analysis


Sign in / Sign up

Export Citation Format

Share Document