Bone Trabecula Surface Reconstruction for Cranium Scaffold in Bone Tissue Engineering

2013 ◽  
Vol 284-287 ◽  
pp. 1535-1539
Author(s):  
Shu Xian Zheng ◽  
Jia Li ◽  
Zheng Hua Gong

In bone tissue engineering, the scaffold architecture is very important for cell growth, it is better to make it similar with the native bone trabecula. To imitate the nature bone morphology, this paper presents a 3D reconstruction method of bone trabecula surface for cranium scaffold. Firstly, a native human cranium specimen on forehead was scanned by micro CT equipment and a set of gray level images were obtained. Then through image denoising, image enhancement, contour extraction and triangular surface reconstruction, the 3D structure of the specimen and its internal bone trabecula were reconstructed successfully. Lastly, to evaluate the feasibility of the method, a biomaterial scaffold case was fabrication using lost-foam casting technology. Results shown that the bone trabecula architecture in the scaffold is best retained and the porous structure is highly similar with the native specimen. This reconstructions process is simple and objective, which provide a new way for clinic cranium restoration.

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3129
Author(s):  
Rohaya Megat Abdul Wahab ◽  
Nurmimie Abdullah ◽  
Shahrul Hisham Zainal Ariffin ◽  
Che Azurahanim Che Abdullah ◽  
Farinawati Yazid

A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1389 ◽  
Author(s):  
Juan Ivorra-Martinez ◽  
Luis Quiles-Carrillo ◽  
Teodomiro Boronat ◽  
Sergio Torres-Giner ◽  
José A. Covas

In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5–20 wt % range were incorporated into P(3HB-co-3HHx) by melt compounding and the resulting pellets were shaped into parts by injection molding. The addition of nHA improved the mechanical strength and the thermomechanical resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased the tensile (Et) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal stability of the parts also declined. The P(3HB-co-3HHx) parts filled with nHA contents of up to 10 wt % matched more closely the mechanical properties of the native bone in terms of strength and ductility when compared with metal alloys and other biopolymers used in bone tissue engineering. This fact, in combination with their biocompatibility, enables the development of nanocomposite parts to be applied as low-stress implantable devices that can promote bone reconstruction and be reabsorbed into the human body.


2010 ◽  
Vol 7 (suppl_5) ◽  
Author(s):  
Yuelian Liu ◽  
Gang Wu ◽  
Klaas de Groot

The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing attention. Bone-inducing agents have been locally injected to stimulate the native bone-formation activity, but without much success. The reason is that these drugs must be delivered slowly and at a low concentration to be effective. This then mimics the natural method of cytokine release. For this purpose, a suitable vehicle was developed, the so-called biomimetic coating, which can be deposited on metal implants as well as on biomaterials. Materials that are currently used to fill bony defects cannot by themselves trigger bone formation. Therefore, biological functionalization of such materials by the biomimetic method resulted in a novel biomimetic coating onto different biomaterials. Bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic coating can be a solution for a large bone defect repair in the fields of dental implantology, maxillofacial surgery and orthopaedics. Here, we review the performance of the biomimetic coating both in vitro and in vivo .


2017 ◽  
Vol 131 (8) ◽  
pp. 699-713 ◽  
Author(s):  
Francesca Paino ◽  
Marcella La Noce ◽  
Alessandra Giuliani ◽  
Alfredo De Rosa ◽  
Serena Mazzoni ◽  
...  

Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells that have been successfully used in human bone tissue engineering. To establish whether these cells can lead to a bone tissue ready to be grafted, we checked DPSCs for their osteogenic and angiogenic differentiation capabilities with the specific aim of obtaining a new tool for bone transplantation. Therefore, hDPSCs were specifically selected from the stromal–vascular dental pulp fraction, using appropriate markers, and cultured. Growth curves, expression of bone-related markers, calcification and angiogenesis as well as an in vivo transplantation assay were performed. We found that hDPSCs proliferate, differentiate into osteoblasts and express high levels of angiogenic genes, such as vascular endothelial growth factor and platelet-derived growth factor A. Human DPSCs, after 40 days of culture, give rise to a 3D structure resembling a woven fibrous bone. These woven bone (WB) samples were analysed using classic histology and synchrotron-based, X-ray phase-contrast microtomography and holotomography. WB showed histological and attractive physical qualities of bone with few areas of mineralization and neovessels. Such WB, when transplanted into rats, was remodelled into vascularized bone tissue. Taken together, our data lead to the assumption that WB samples, fabricated by DPSCs, constitute a noteworthy tool and do not need the use of scaffolds, and therefore they are ready for customized regeneration.


2016 ◽  
Vol 10 (1) ◽  
pp. 836-848 ◽  
Author(s):  
MF Griffin ◽  
DM Kalaskar ◽  
A. Seifalian ◽  
PE Butler

Background:Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation.Methods:This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles.Results:Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells.Conclusion:Future studies to improve the application of nanomaterials for bone tissue engineering are needed.


Author(s):  
Kartikeya Dixit ◽  
Niraj Sinha

Abstract Scaffolds play an essential role in bone healing by providing temporary structural support to the native bone tissue and by hosting bone cells. To this end, several biomaterials and manufacturing methods have been proposed. Among the biomaterials, bioactive glasses have attractive properties as a scaffold material for bone repair. Simultaneously, additive manufacturing (AM) techniques have attracted significant attention owing to their capability of fabricating complex and patient specific scaffolds. Accordingly, borosilicate bioactive glass (BG-B30) has been used to fabricate the scaffolds using extrusion-based AM device in this study. Pluronic F-127 was used as an ink carrier that showed suitable shear thinning behavior for fabrication. The pure BG-B30 scaffold had a compressive strength of 23.30 MPa and was reinforced further with functionalized multi-walled carbon nanotube (MWCNT-COOH) to reduce its brittleness and enhance its compressive strength. When compared to the conventional polymer foam replication technique, the combination of MWCNT-COOH reinforcement and AM resulted in an enhancement of the compressive strength by ~646% (1.05 MPa to 35.84 MPa). Further, structural analysis using micro computed tomography revealed that the scaffolds fabricated using AM had better control over strut size and pore size in addition to better network connectivity. Finally, in vitro experiments demonstrated its bioactive behavior by formation of hydroxyapatite, and the cellular studies revealed good cell viability and osteogenesis initiation. These results are promising for the fabrication of patient-specific CNT-reinforced bioactive glass porous scaffolds for bone tissue engineering applications.


2019 ◽  
Vol 14 (10) ◽  
pp. 1900084 ◽  
Author(s):  
Marco A. Arriaga ◽  
May‐Hui Ding ◽  
Astrid S. Gutierrez ◽  
Sue Anne Chew

2016 ◽  
Vol 3 (4) ◽  
pp. 385-397 ◽  
Author(s):  
Marco A. Velasco ◽  
Yadira Lancheros ◽  
Diego A. Garzón-Alvarado

Abstract Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages. Highlights We model scaffolds structures for bone tissue engineering using a reaction-diffusion system. Geometrical properties such as channel width can be adjusted using this methodology. Mechanical and geometrical features of parts made using a material jetting system are described.


Author(s):  
Vipra Guneta ◽  
Jun Kit Wang ◽  
Saeed Maleksaeedi ◽  
Ze Ming He ◽  
Marcus Thien Chong Wong ◽  
...  

One of the main goals of bone tissue engineering is the development of scaffolds that mimic both functional and structural properties of native bone itself. This study describes the preliminary work carried out to assess the viability of using three dimensional printing (3DP) technology for the fabrication of porous titanium scaffolds with lowered modulus and improved biocompatibility. 3DP enables the manufacturing of three dimensional (3D) objects with a defined structure directly from a Computer Aided Design (CAD). The overall porosity of the 3D structures is contributed by the presence of both pores-by-process (PBP) and pores-by-design (PBD). This study mainly focuses on the PBP, which are formed during the sintering step as the result of the removal of the binding agent polyvinyl alcohol (PVA). Sintering temperatures of 1250oC, 1350oC and 1370oC were used during the fabrication process. Our results showed that by varying the binder percentage and the sintering temperature, pores with diameters in the range of approximately 17-24 μm could be reproducibly achieved. Other physical properties such as surface roughness, porosity and average pore size were also measured for all sample groups. Results from subsequent cell culture studies using adipose tissue-derived mesenchymal stem cells (ASCs) showed improved attachment, viability and proliferation for the 3DP titanium samples as compared to the two-dimensional (2D) dense titanium samples. Hence, based on our current preliminary studies, 3DP technology can potentially be used to fabricate customized, patient-specific metallic bone implants with lowered modulus. This can effectively help in prevention of stress-shielding, and enhancement of implant fixationin vivo. It is envisioned that an optimized combination of binder percentage and sintering temperature can result in the fabrication of scaffolds with the desired porosity and mechanical properties to fit the intended clinical application.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document