Design and Fabrication of the Piezoelectrically Actuated Micropump with Implanted Check Valves

2013 ◽  
Vol 284-287 ◽  
pp. 2032-2036
Author(s):  
Chiang Ho Cheng ◽  
Yi Pin Tseng

This paper aims to present the design, fabrication and test of a novel piezoelectrically actuated, check valve embedded micropump having the advantages of miniature size, light weight and low power consumption. The micropump consists of a piezoelectric actuator, a stainless steel chamber layer with membrane, two stainless steel channel layers with two valve seats, and a nickel check valve layer with two bridge-type check valves. The check valve layer was fabricated by nickel electroforming process on a stainless steel substrate. The chamber and the channel layer were made of the stainless steel manufactured using the lithography and etching process based on MEMS fabrication technology. The effects of check valve thickness, operating frequency and back pressure on the flow rate of the micropump are investigated. The micropump with check valve 20 μm in thickness obtained higher output values under the sinusoidal waveform of 120 Vpp and 160 Hz. The maximum flow rate and backpressure are 1.82 ml/min and 32 kPa, respectively.

2001 ◽  
Author(s):  
Hyeun Joong Yoon ◽  
Woo Young Sim ◽  
Sang Sik Yang

Abstract This paper presents the fabrication and test of a phase-change type micropump with two aluminum flap valves. This micropump consists of a pair of Al flap valves and a phase-change type actuator. The actuator is composed of a heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is actuated by the vaporization and the condensation of the working fluid. The micropump is fabricated by the anisotropic etching, the boron diffusion and the metal evaporation. The dimension of the micropump is 8.5 mm × 5 mm × 1.7 mm. The forward and the backward flow characteristics of the flap valve illustrate the appropriateness as a check valve. Also, the flow rate of the micropump is measured. When the square wave input voltage of 10 V is applied to the heater, the maximum flow rate of the micropump is 6.1 μl/min at 0.5 Hz and the duty ratio of 60% for zero pressure difference.


2020 ◽  
Author(s):  
Lipeng He ◽  
Xiaoqiang Wu ◽  
Zhe Wang ◽  
Da Zhao ◽  
Jianming Wen ◽  
...  

Abstract Piezoelectric pumps are applied in cooling systems of microelectronic devices because of their small size. However, cooling efficiency is limited by low flow rate. A Straight arm wheeled check valve made of silica gel was proposed, which can improve flow rate of piezoelectric pump, solve the influence of glue aging on the sealing ability of a wheeled check valve and reduce the size of piezoelectric pump. This paper discusses the influence of valve arm number (N=2, 3 and 4), valve arm width (W=1.0, 1.2 and 1.4mm) and valve thickness (T=0.6, 0.8 and 1.0mm) on flow rate characteristics of piezoelectric pumps. When valve opening rises, the flow rate increases. The simulation results show that valves with 2 valve arms, 0.6mm valve thickness and 1.0mm valve arm width have maximum valve opening. Experimental results show that piezoelectric pumps with different valve parameters have different optimal frequencies. In addition, maximum flow rate is 431.6mL/min at 220V and 70Hz. This paper provides a reference for the application of piezoelectric pump in cooling system.


2020 ◽  
Vol 19 (2) ◽  
pp. 64-68
Author(s):  
Mrinmoy Biswas ◽  
Sudip Das Gupta ◽  
Mohammed Mizanur Rahman ◽  
Sharif Mohammad Wasimuddin

Objective: To assess the success of BMG urethroplasty in long segment anterior urethral stricture. Method: From January 2014 to December 2015, twenty male patients with long anterior segment urethral stricture were managed by BMG urethroplasty. After voiding trial they were followed up at 3 month with Uroflowmetry, RGU & MCU and PVR measurement by USG. Patients were further followed up with Uroflowmetry and PVR at 6 months interval.Successful outcome was defined as normal voiding with a maximum flow rate >15ml /sec and PVR<50 ml with consideration of maximum one attempt of OIU after catheter removal. Results: Mean stricture length was 5.2 cm (range 3-9 cm) and mean follow-up was 15.55 months (range 6-23 months). Only two patients developed stricture at proximal anastomotic site during follow-up. One of them voided normally after single attempt of OIU. Other one required second attempt of OIU and was considered as failure (5%). Conclusion: BMG urethroplasty is a simple technique with good surgical outcome. Bangladesh Journal of Urology, Vol. 19, No. 2, July 2016 p.64-68


2013 ◽  
Vol 133 (4) ◽  
pp. 126-127 ◽  
Author(s):  
Shota Hosokawa ◽  
Motoaki Hara ◽  
Hiroyuki Oguchi ◽  
Hiroki Kuwano

2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

Author(s):  
Yuchuan Zhu ◽  
Chang Liu ◽  
Yunze Song ◽  
Long Chen ◽  
Yulei Jiang ◽  
...  

In this paper, an electro-hydrostatic actuator driven by dual axial-mounted magnetostrictive material rods-based pumps (MMPs) with a new type of active rectification valve is designed in the current study. Based on flow distribution of the active rectification valve and driving energy provided by two MMPs, the actuator can output continuous and bidirectional displacement. By establishing a mathematical model of the actuating system, using simulation techniques, the change rule of hydraulic cylinder’s motion state caused by different driving signals are studied and analyzed. Test equipment platform is constructed in the laboratory to test the output characteristics and confirm the feasibility of the new concept. The experimental results indicate that the maximum flow rate can reach approximately 2.7 L·min−1, while the operating frequency is 180 Hz.


Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Travis Wiens ◽  
Doug Bitner ◽  
Minghao Tai ◽  
...  

The inertance hydraulic converter relies on fluid inertance to modulate flow or pressure and is considered to be a competitive alternative to the conventional proportional hydraulic system due to its potential advantage in efficiency. As the quantification of fluid inertance, the suction flow characteristic is the crucial performance indicator for efficiency improvement. To explore the discrepancy between the passive inertance hydraulic converter featured by the check valve and the active inertance hydraulic converter driven by an equivalent 2/3 way fast switching valve in regard to suction flow characteristics, analytical models of the inertance hydraulic converters were established in MATLAB/Simulink. The validated models of the respective suction components were incorporated in the overall analytical models and their suction flow characteristics were theoretically and experimentally discussed. The analytical predictions and experimental measurements for the current configurations indicated that the active inertance hydraulic converter yields a larger transient suction flow rate than that of the passive inertance hydraulic converter due to the difference of the respective suction components. The suction flow characteristic can be modulated using the supply pressure and duty cycle, which was confirmed by experimental measurements. In addition, the suction flow characteristics are heavily affected by the resistance of the suction flow passage and switching frequency. There is a compromise between the resistance and switching frequency for inertance hydraulic converters to achieve large suction flow rate.


Sign in / Sign up

Export Citation Format

Share Document