The Position Servo Control Strategy of High Dynamic Response Based on Electric Steering Gear

2013 ◽  
Vol 310 ◽  
pp. 524-531
Author(s):  
Guo Ping Zhao ◽  
Hong Xing Wu ◽  
Min Xiu Kong ◽  
Li Yi Li

This paper studies the current loop, velocity loop and position loop controller of PMSM position servo system for Electric steering gear servo system. It makes research around the principle of PMSM vector control and three control loop control strategy. The control strategy bases on the principle of vector control of PMSM when id=0 and uses the classic PI control theory. A new method of decouple control for the current of direct axis and cross axis direct is presented. It will overcome the impact of EMF when the motor is working in high dynamic. The system uses the feed-forward control to compensate the position deviation of permanent magnet synchronous motor using in the steering gear. The paper also researches transfer function of feed-forward control of the location, and establishes the feed-forward controller model of the position loop. Simulation results demonstrate the effectiveness of our proposed scheme.

2014 ◽  
Vol 960-961 ◽  
pp. 1285-1289
Author(s):  
Shu Jun Yao ◽  
Jun Luo ◽  
Min Xiao Han ◽  
Yang Cheng Xiang Song

A new approach of dual closed-loop control strategy is proposed, and the internal cause of the inverter output voltage waveform distortion is analyzed in this paper. The ability to resist load disturbance is improved by load current feed-forward compensation in the approached scheme. With inner current loop improving the speed of dynamic response, nonlinear load adaptability is enhanced. Pole assignment method is used to design controller parameters, the control scheme is simulated in PSCAD/EMTDC, the nice performance of the proposed control strategy is verified by the simulation results.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nana-Kwadwo Biritwum ◽  
Dziedzom K. de Souza ◽  
Odame Asiedu ◽  
Benjamin Marfo ◽  
Uche Veronica Amazigo ◽  
...  

Abstract Background The control of onchocerciasis in Ghana started in 1974 under the auspices of the Onchocerciasis Control Programme (OCP). Between 1974 and 2002, a combination of approaches including vector control, mobile community ivermectin treatment, and community-directed treatment with ivermectin (CDTI) were employed. From 1997, CDTI became the main control strategy employed by the Ghana OCP (GOCP). This review was undertaken to assess the impact of the control interventions on onchocerciasis in Ghana between 1974 and 2016, since which time the focus has changed from control to elimination. Methods In this paper, we review programme data from 1974 to 2016 to assess the impact of control activities on prevalence indicators of onchocerciasis. This review includes an evaluation of CDTI implementation, microfilaria (Mf) prevalence assessments and rapid epidemiological mapping of onchocerciasis results. Results This review indicates that the control of onchocerciasis in Ghana has been very successful, with a significant decrease in the prevalence of infection from 69.13% [95% confidence interval) CI 60.24–78.01] in 1975 to 0.72% (95% CI 0.19–1.26) in 2015. Similarly, the mean community Mf load decreased from 14.48 MF/skin snip in 1975 to 0.07 MF/skin snip (95% CI 0.00–0.19) in 2015. Between 1997 and 2016, the therapeutic coverage increased from 58.50 to 83.80%, with nearly 100 million ivermectin tablets distributed. Conclusions Despite the significant reduction in the prevalence of onchocerciasis in Ghana, there are still communities with MF prevalence above 1%. As the focus of the GOCP has changed from the control of onchocerciasis to its elimination, both guidance and financial support are required to ensure that the latter goal is met.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840098
Author(s):  
Yuan Li ◽  
Huifang Shen ◽  
Chao Xiong ◽  
Yaofei Han ◽  
Guofeng He

In order to eliminate the effect on the grid current caused by the background harmonic voltage and the reference signal on the grid connected multi-inverter, this paper adopts the double closed-loop feed-forward control strategy. This strategy is based on the inductor voltage and the grid-connected current, and the integrated control strategy of quasi-proportional resonance loop parallel to a specific harmonic compensation loop. Based on the closed-loop model of multiple inverters, the change curves of the transfer function of the two control strategies are compared with the feed-forward control and the composite proportional resonance. The two corresponding control methods are used to analyze the current quality of the multi-inverter impact. Finally, the MATLAB/Simulink simulation model is set up to verify the proposed control strategies. The simulation results show that the proposed method can achieve better tracking of the sinusoidal command signal at the fundamental frequency, and enhance the anti-interference ability of the system at the 3rd, 5th, and 7th harmonic frequency.


Author(s):  
Milos Milanovic ◽  
Verica Radisavljevic-Gajic

This paper presents, a novel controller design technique that can be used for the Proton Exchange Membrane Fuel Cell to tackle the impact of the sudden stack current disturbances. The proposed controller design consists of three components: a full-state feedback control loop, an integral of error control loop and a feed-forward control loop. The feed-forward control loop is designed to ease the impact of the piecewise continuous current disturbance on the stack voltage. Linearized system matrices are set up in such a way that a new augmented system is formed. Controller gains are calculated by using a quadratic performance criterion which is minimized along the trajectories of the augmented system. Simulation results are presented and discussed.


Author(s):  
Panini Kolavennu ◽  
Susanta K. Das ◽  
K. Joel Berry

A robust control strategy which ensures optimum performance is crucial to proton exchange membrane (PEM) fuel cell development. In a PEM fuel cell stack, the primary control variables are the reactant’s stochiometric ratio, membrane’s relative humidity and operating pressure of the anode and cathode. In this study, a 5 kW (25-cell) PEM fuel cell stack is experimentally evaluated under various operating conditions. Using the extensive experimental data of voltage-current characteristics, a feed forward control strategy based on a 3D surface map of cathode pressure, current density and membrane humidity at different operating voltages is developed. The effectiveness of the feed forward control strategy is tested on the Green-light testing facility. To reduce the dependence on predetermined system parameters, real-time optimization based on extremum seeking algorithm is proposed to control the air flow rate into the cathode of the PEM fuel cell stack. The quantitative results obtained from the experiments show good potential towards achieving effective control of PEM fuel cell stack.


Author(s):  
Ming Li ◽  
Huapeng Wu ◽  
Heikki Handroos ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

Due to the high stiffness, high dynamic performance, the parallel manipulator presents great advantages in the industrial manufacture. However in the machining process, the external low frequency disturbance, e.g. the varying cutting force, has a significant effect on the control system of parallel manipulator, which presents a chatter phenomenon on the end-effector of manipulator. In this paper, a feed forward control strategy is proposed to eliminate the effect of the random external disturbance on the control system of parallel manipulator. By applying the external disturbance force on the inverse dynamic model, the compensation torque is calculated and fed forward into the manipulator driving joints to cancel out the effect of the disturbance acting on the manipulator end-effector. The key issue herein is to be able to establish the accurate dynamic model for the parallel manipulator. Furthermore, in order to guarantee the position precision of the manipulator, a feed forward model-based control strategy combined with the feedback loop PV (position and velocity) control has been developed based on the reference trajectory, which could relatively simplify the highly nonlinear control system of the parallel manipulator and obtain a stable tracking error model. The whole research has been carried out on a parallel manipulator named CaPaMan which has been built in the laboratory of robotics and mechatronics in university of Cassino and South Latium. The results show that the chatter phenomenon could be utterly depressed by the force compensation from the feed forward path of the external disturbance; meanwhile the model-based controller can guarantee the trajectory tracking accuracy within a stable error by choosing the suitable PV gains.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Lu ◽  
Yunxiang Xie ◽  
Li Chen

Aiming at the nonlinear characteristics of VIENNA rectifier and using differential geometry theory, a dual closed-loop control strategy is proposed, that is, outer voltage loop using sliding mode control strategy and inner current loop using feedback linearization control strategy. On the basis of establishing the nonlinear mathematical model of VIENNA rectifier ind-qsynchronous rotating coordinate system, an affine nonlinear model of VIENNA rectifier is established. The theory of feedback linearization is utilized to linearize the inner current loop so as to realize thed-qaxis variable decoupling. The control law of outer voltage loop is deduced by utilizing sliding mode control and index reaching law. In order to verify the feasibility of the proposed control strategy, simulation model is built in simulation platform of Matlab/Simulink. Simulation results verify the validity of the proposed control strategy, and the controller has a strong robustness in the case of parameter variations or load disturbances.


2012 ◽  
Vol 608-609 ◽  
pp. 164-168
Author(s):  
Jian Jun Su ◽  
Men Yue Hu ◽  
Hong Yan Gong ◽  
Hai Tao Sun ◽  
Zhi Jian Hu ◽  
...  

Firstly the research situation for grid-connected photovoltaic (PV) is introduced, then, the engineering mathematical model of PV cells is introduced. The perturbation and observation algorithm is chosen as the maximum power point tracking (MPPT) algorithm. The SPWM double-loop control strategy with outer voltage loop and inner current loop is described and a three-phase grid-connected photovoltaic model is established. The simulation results demonstrate the validity and correctness of the simulation model built in this paper.


2017 ◽  
Vol 139 ◽  
pp. 00137
Author(s):  
Chu Wang ◽  
Jin Wang ◽  
Tian Qin ◽  
Xuhui Liu ◽  
Xiang Wu

Sign in / Sign up

Export Citation Format

Share Document