Practical Research on Predictive Fuzzy-PID Control in Reactor Temperature Control

2013 ◽  
Vol 313-314 ◽  
pp. 355-358
Author(s):  
Chang Yuan Huang ◽  
Hai Peng Pan

Against the characteristics of the temperature in reactor such as time-delay, time-varying and difficulty to build a precise mathematical model in the chemical industry. Through the analysis of dynamic characteristics of the controlled object, the method of fuzzy-PID control was designed based on a predictive model. According to the detected temperature signal, the output deviation of the controller and the on-line identification of prediction model, this algorithm gains the predictive value which uses a generalized predictive model and the fuzzy-PID control. Then compare the predictive value with the reference trajectory to get the deviation. Finally use this deviation and the change of the deviation to optimize the PID control parameters and attain the appropriate amount of system control. The simulation results show that the fuzzy-PID control based on prediction model has strong adaptability, good robustness, control accuracy and higher practical value.

2012 ◽  
Vol 505 ◽  
pp. 227-232
Author(s):  
Yan Sheng Li ◽  
Man Feng Dou ◽  
Jin Li Lei

The system of contra rotating PMBLDCM widely used in underwater vehicle is a non-linear, multi-variable, time-varying system. Using the traditional method for PID control is difficult to achieve fine control effect. By designing a Fuzzy-PID controller, fuzzy algorithm for on-line auto-tuning PID parameters is applied to the system of a speed closed-loop in PMBLDCM double closed-loop system. An example of how to design and simulate the system by using the software MATLAB is introduced. The simulation results show that the method of Fuzzy-PID control has better control performance comparing with the conventional PID control, it has characteristics of no overshoot, fast response, small torque ripple.


2012 ◽  
Vol 466-467 ◽  
pp. 47-51 ◽  
Author(s):  
Jing Liu

The process of PVC polymerization is nonlinear and time-delayed. It is very difficult to establish an exact mathematical model. Based on the analysis of the conventional PID controller’s limitation, the fuzzy PID control system of PVC polymerization is introduced. A new kind of fuzzy PID controller is designed and the three parameters of PID can be self-tuned on-line. The simulation result proves that fuzzy PID controller is better than common PID controller.


2013 ◽  
Vol 321-324 ◽  
pp. 1748-1752
Author(s):  
Hai Xia Zhao ◽  
De Gong Chang

When winding yarn, the yarn tension control of a winding machine affects the quality of yarn subsequent processing. For randomicity and instability of the yarn tension in a winding machine, the paper designed a yarn tension control system based on analyzing conventional PID controller, using the fuzzy PID control algorithm to control the yarn tension system and realizing on-line self-adjustment of PID control parameters. The simulation experiment showed that system tension had better response using fuzzy PID control and eliminated nonlinearity and uncertainty of the system.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2013 ◽  
Vol 846-847 ◽  
pp. 321-324 ◽  
Author(s):  
Le Peng Song ◽  
Hua Bin Wang

As liquid level cascade system has the character the issue of non-linearity ,time variability and the overshoot,tradition PID control can not meet the requirement of precise molding system. So devise a self-_ adaptive fuzzy PID control .A self-_ adaptive fuzzy PID control combined PID to control calculate way and faintness to control the advantage of method, this text permits water tank to carry on mathematics model to design the double permit a water tank liquid misty PID string class control system. Matlab/Simulink and fuzzy logic toolbox are simulated to the single loop PID control system,the cascade control system and the cascade control system based on fuzzy self-tuning PID were simulated with Simulink. The analysis and simulation results indicate that the character issue of non-linearity ,time variability and the overshoot of the liquid level cascade control system based on a self-_ adaptive fuzzy PID controller are superior to previous of two methods.


2014 ◽  
Vol 685 ◽  
pp. 368-372 ◽  
Author(s):  
Hao Zhang ◽  
Ya Jie Zhang ◽  
Yan Gu Zhang

In this study, we presented a boiler combustion robust control method under load changes based on the least squares support vector machine, PID parameters are on-line adjusted and identified by LSSVM, optimum control output is obtained. The simulation result shows control performance of the intelligent control algorithm is superior to traditional control algorithm and fuzzy PID control algorithm, the study provides a new control method for strong non-linear boiler combustion control system.


Sign in / Sign up

Export Citation Format

Share Document