Study on the Influence of Polypropylene Fiber and SBR Latex on the Static Strength of Rubber Mortar

2013 ◽  
Vol 318 ◽  
pp. 297-302 ◽  
Author(s):  
Shao Qin Ruan ◽  
Cheng Yuan Lin ◽  
Si Xian Jiang

This paper deals with the investigation of the static strength of rubber mortar with the inclusion of two macromolecules: SBR (butylbenzene) latex and PP (polypropylene) fiber. The rubber mortar were produced with the inclusion of SBR latex and PP fiber. The characteristics were performed by testing the compressive strength, flexural strength and the C/F (it refers to the ratio of compressive to flexural strength). The results proved that compared to conventional mortar and rubber mortar, the C/F (lower C/F means better flexibility) of SBR latex modified rubber mortar decreased and its flexibility significantly enhanced. The rubber mortar with 2.5% P/C (it refers to the ratio of polymer-cement) of SBR latex performed best in flexibility and the flexibility of rubber mortar with 30% rubber particles proportion was better than the 20% counterparts. The C/F of PP fiber and SBR latex modified rubber mortar was minimum with 7.5% P/C (20% rubber particles proportion groups) and 2.5% P/C of SBR latex (30% rubber particles proportion groups).

2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2937
Author(s):  
Huimin Chen ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Jing Liu ◽  
Xiuli Wei ◽  
...  

Orthogonal test method was applied to analyze the strength properties of basalt-polypropylene mortar. The effect of basalt fiber length, polypropylene fiber length, basalt fiber volume content and polypropylene fiber volume content on the 28 d cube compressive strength and flexural strength were investigated. Test results show that comparing with flexural strength, the influence of basalt fiber length and polypropylene fiber length on compressive strength of mortar was greater than on flexural strength. The length of polypropylene fibers contributes the highest to the flexural strength. The effect of basalt fiber on mortar strength is the largest with 6 mm length and 4% content. Polypropylene fiber length has the greatest influence on the compressive strength of fiber mortar, followed by basalt fiber volume content. Volume content of polypropylene fiber has the greatest influence on flexural strength of fiber mortar, followed by polypropylene fiber length. According to the scoring of the efficacy coefficient method, the best ratio combination for compressive and flexural strength was the basalt fiber length of 9 mm, polypropylene fiber length of 6 mm, basalt fiber volume content of 4% and polypropylene fiber volume content of 4%. Compared with the blank samples, the 28 d compressive strength and 28 d flexural strength of the cement mortar samples were increased by 27.4% and 49% respectively. According to the test results, the properties of the fiber were analyzed and evaluated and the mechanism of fiber action and fiber microstructure were analyzed.


2011 ◽  
Vol 219-220 ◽  
pp. 1601-1607 ◽  
Author(s):  
Tammam Merhej ◽  
Xin Kai Li ◽  
De Cheng Feng

This paper presents the experimental investigation carried out to study the behavior of polypropylene fiber reinforced concrete (PPFRC) under compression and flexure. Crimped polypropylene fibers and twisted polypropylene fiber were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. The influence of the volume fraction of each shape of polypropylene fiber on the compressive strength and flexural strength is presented. Empirical equations to predict the effect of polypropylene fiber on compressive and flexural strength of concrete were proposed using linear regression analysis. An increase of 27% in flexural strength was obtained when 0.6% volume fraction of twisted polypropylene fiber was added. It was also found that the contribution of fiber in flexural strength is more effective when twisted fibers were used. The compressive strength was found to be less affected by polypropylene fiber addition.


2010 ◽  
Vol 168-170 ◽  
pp. 456-459
Author(s):  
Hai Yan Yuan ◽  
Shui Zhang ◽  
Guo Zhong Li

By adopting the method of orthogonal experimental design, the effect of three independent variables, that is steel fiber fraction, polypropylene fiber fraction and silica fume fraction on the compressive strength, flexural strength and shrinkage of cement mortar was studied. The results indicate that steel fiber is one of the most important factors affecting compressive strength and shrinkage, and polypropylene fiber is one of the most important factors affecting flexural strength and shrinkage of cement mortar. By using deviation analysis to analyze the orthogonal experiment results, the optimized mix proportion of hybrid fiber reinforced cement mortar is determined. The hybrid effect of steel fiber and polypropylene fiber on the properties of cement mortar is discussed.


2012 ◽  
Vol 174-177 ◽  
pp. 757-760
Author(s):  
Qing Wang ◽  
Zhao Yang Ding ◽  
Jing Da ◽  
Zhi Tong Sui

The compatibility and mechanical property of two kinds of synthetic fibers to geopolymer were studied. Polyvinyl alcohol (PVA) and polypropylene (PP) were used as reinforcing fiber materials. The result shows that flexural strength of geopolymer is obviously increased by mixed with reinforcing fiber. PVA is better than PP in reinforcing the flexural strength, both of these fibers have no significant effect in reinforcing the compressive strength to geopolymer.


2011 ◽  
Vol 250-253 ◽  
pp. 178-181
Author(s):  
Ya Ding Zhao ◽  
Xue Ying Li ◽  
Ling Chao Kong ◽  
Wei Du

Under variable temperature curing conditions(30 oC ~70 oC), concrete with fly ash whose compressive strength, flexural strength, and dynamic elastic modulus are better than ones without fly ash.Compared with constant temperature 20oC, 50 oC and 70 oC, variable temperature curing(VTC) is benefit for the improvement of mechanical properties of 30% fly ash concrete, but which is no advantage to improve performance of 50% fly ash concrete.


2011 ◽  
Vol 346 ◽  
pp. 30-33
Author(s):  
Hong Wei Wang

A designed experimental study has been conducted to investigate the effect of polypropylene fiber on the compressive strength and flexural properties of concrete containing silica fume, a large number of experiments have been carried out in this study. The flexural properties include flexural strength and flexural modulus of elasticity. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of action of polypropylene fiber on compressive strength, flexural strength and flexural modulus of elasticity has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and flexural strength, and the flexural modulus of elasticity of concrete containing silica fume decrease gradually with the increase of fiber volume fraction.


In this paper various mix proportions of Reactive Powder Concretes were formulated using ordinary Portland cement, Fly ash, Micro silica, Silica Fume, Quartz powder etc and these concretes were subjected to strength test. The best mix was selected for further in depth study with fibers like Sisal fiber, Coir fiber, Hair fiber and Polypropylene fiber mixed Reactive Powder Concrete and the various tests have been performed Cube Compressive strength, Cylinder Compressive strength, Flexural strength, Split Tensile strength, Shear test, Water absorption, Sorptivity and Chloride diffusion etc. As a result, fiber incorporated concrete shows increasing Flexural strength, splitting tensile strength, and shear strength up to 30% as compared to control RPC and gives minimal decrease in compressive strength by the addition of fibers. These characteristics make it as a promising material for casting non structural elements such as pressure pipes, flooring tiles, Partition panels, door and window frames. It can also be used as repair materials.


2011 ◽  
Vol 228-229 ◽  
pp. 627-633
Author(s):  
Tammam Merhej ◽  
Liang Liang Cheng ◽  
De Cheng Feng

The effect of adding polypropylene fibers; with different shapes and volume fractions; on the compressive strength, modulus of rupture, load-deflection curve and flexural toughness (equivalent flexural strength ratio) of concrete was investigated. Crimped and twisted polypropylene fibers were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. It was found that the compressive strength, flexural strength and the equivalent flexural strength ratio of concrete increased about 11%, 25% and 40% respectively by adding 0.6% volume fraction of twisted polypropylene fiber. In addition; it was found that the contribution of polypropylene fiber to the flexural strength and flexural toughness was more effective when twisted polypropylene fiber was added comparing to crimped polypropylene fibers. The experimental results were used in numerical example using FAARFIELD program to explore the airfield pavement thickness reduction resulted from polypropylene fiber incorporation.


Sign in / Sign up

Export Citation Format

Share Document