Research on Mechanical Property of Fiber-Reinforced Geopolymer

2012 ◽  
Vol 174-177 ◽  
pp. 757-760
Author(s):  
Qing Wang ◽  
Zhao Yang Ding ◽  
Jing Da ◽  
Zhi Tong Sui

The compatibility and mechanical property of two kinds of synthetic fibers to geopolymer were studied. Polyvinyl alcohol (PVA) and polypropylene (PP) were used as reinforcing fiber materials. The result shows that flexural strength of geopolymer is obviously increased by mixed with reinforcing fiber. PVA is better than PP in reinforcing the flexural strength, both of these fibers have no significant effect in reinforcing the compressive strength to geopolymer.

2020 ◽  
Vol 1002 ◽  
pp. 594-603
Author(s):  
Dalya H. Hameed ◽  
Abeer Abduljabbar Al-Saeedi

In the field of precast concrete, the utilize of fiber reinforced self-consolidation concrete (SCC) has big potential as it can be supplied directly into the molds without any effort for vibration or compacting. Likewise, depending on the design requirements, it has the potential to supplant conventional steel reinforcement. The using of one type of fiber in producing of SCC has been usual. Fiber reinforced self-consolidation concrete (FSCC) contains two type or more of fiber can improve the mechanical properties and may cause performance synergies. This paper investigates the combination of fibers, often referred to as hybridization, for a cementitious matrix. Control, single, two hybrid fibers were cast using different steel and macro synthetic fibers ratios. Fresh behavior, such as the ability to flow and fill and the tendency to segregate, was evaluated by a special SCC test based on its specifications. Moreover, compressive strength, splitting tensile strength, flexural strength, ductility, toughness, and the load - deflection relationship were determined to assess the hardened behavior. The results showed that the compressive strength of hybrid fiber mixes slightly improved. The increment in splitting and flexural strength for hybrid mixes was (60 and 58) % respectively. Also, these hybrid fiber mixes represent a more ductile failure further, the high toughness index, which reaches to 45% of control mix.


Author(s):  
Vrushabh K. Hulle

Abstract: Concrete consisting of cement, water, fine and coarse aggregates are widely used in civil engineering constructions. Though making concrete is convenient and inexpensive, its brittle behavior upon tensile loading is one of its undesirable characteristics so that leads to the development of fiber reinforced concrete or engineered cementitious composites to improve this deficient. The Flexural strength of PVA (polyvinyl alcohol) FRC (fiber reinforced concrete) can be 150-200% greater than for normal concrete. According to Structural designers the damage tolerance and inherent tight crack width control of PVA FRC is found to be impressive in recent full-scale structural applications. If proper volume fractions are used the compressive strength PVA FRC can be similar to that of conventional concrete. The aim of this research work is to study compressive and tensile strength of FRC consisting PVA fiber & glass powder and studying the effect of glass powder in it. This research also gives rough idea on crack resistance capacity of FRC. In this paper we studied and provided detailed review on properties of PVA FRC with glass powder and experimentally identified the best ECC mix by analyzing the compressive & the flexural strength at different ratios like 0.5%, 1%, 1.5% of PVA fiber of total dry mix weight and in each case 15% of fine aggregate was replaced by glass powder. By conducting the compressive strength test and flexural strength test the maximum result we get at 28 days is 28.38Mpa and 8.95Mpa respectively which is more durable as compared to conventional concrete by IS 516:1959. So by analysis of results it can be seen that 1% mix is found to be optimum in all aspects. Keywords: PVA FRC, Polyvinyl Alcohol, Fibre Reinforced Concrete, Glass Powder.


2013 ◽  
Vol 859 ◽  
pp. 56-59 ◽  
Author(s):  
Yong Qiang Ma

A large number of experiments have been carried out in this study to reveal the effect of the steel fiber dosage on the mechanical properties of HPC (high performance concrete). The mechanical property includes compressive strength, elastic modulus and flexural strength. The results indicate that the addition of steel fiber increase the compressive strength, elastic modulus and flexural strength of HPC. When the steel fiber dosage is less than 2%, these mechanical property parameters are increasing gradually with the increase of steel fiber dosage, while these parameters begin to decrease when the steel fiber dosage is more than 2%. With the development of HPC, the application of steel fibers in HPC becomes more and more popular. In the actual construction of steel fiber reinforced HPC, the dosage of steel fiber should be controlled strictly in order to ensure that the steel fibers can perform their best improvement on high performance concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jingjing Feng ◽  
Jianwei Sun ◽  
Peiyu Yan

In this study, the ground fly ash is made of ordinary grade I fly ash by grinding. Compared with grade I fly ash, the influence of ground fly ash on cement hydration and mechanical property of mortar was investigated. The results show that ground fly ash can improve the hydration of cement at all the ages compared with grade I fly ash, and not only does its pozzolanic reaction start earlier, but the reaction degree is higher and the speed is quicker. Before 3 days, the contribution of ground fly ash to the strength is mainly due to physical filling and microaggregate effect. After that, the contribution of pozzolanic effect to the strength becomes obvious and can significantly increase the compressive strength after 60 days and the flexural strength after 28 days. The ground fly ash is better than grade I fly ash to optimize the pore structure of hardened pastes. It can significantly reduce the number of harmful pores (>20 nm) and increase the number of harmless pores (<20 nm), which refines the pore structure and makes the structure denser.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Woong Kim ◽  
Ri-On Oh ◽  
Joo-Ha Lee ◽  
Mi-Sol Kim ◽  
Sang-Min Jeon ◽  
...  

This study evaluated the performance of latex-modified fiber-reinforced concrete (RC) segments as a function of the substitution level of microsilica and type of reinforced fiber, to address the problem of corrosion of steel segments and steel-reinforced fiber segments, which are commonly used to shield tunnel-boring machine (TBM) tunnels in urban spaces. Our study compared macro synthetic, steel, and hybrid (macro synthetic fiber + polypropylene fiber) reinforcing fibers. The substitution levels of microsilica used were 0, 2, 4, and 6%. The target strengths were set at 40 and 60 MPa to test compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance. Testing of latex-modified and fiber-reinforced segment concrete showed that the compressive strength, flexural strength, and chloride ion penetration resistance increased with an increasing substitution level of microsilica. These improvements were attributed to the densification of the concrete due to filling micropores with microsilica. Micro synthetic fiber was more effective in terms of improved compressive strength, flexural strength, and chloride ion penetration resistance than steel fiber. These results were due to the higher number of micro synthetic fibers per unit volume compared with steel fiber, which reduced the void volume and suppressed the development of internal cracks. The optimal microsilica content and fiber volume fraction of micro synthetic fiber were 6% and 1%, respectively. To evaluate the effects of the selected mixtures and hybrid fibers simultaneously, other mixing variables were fixed and a hybrid fiber mixture (combination of macro synthetic fibers and polypropylene fibers) was used. The hybrid fiber mixture produced better compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance than the micro synthetic fibers.


2017 ◽  
Vol 730 ◽  
pp. 395-400 ◽  
Author(s):  
Shi Bing Sun ◽  
Jun Jie Li ◽  
Lun Zhao

The current paper experimentally investigated the effect of different kinds re-dispersible polymer powers (RPP) on cement-based self-leveling mortars. The construction operation of mortar and its mechanical property was tested in accordance with the standard JC/T 981-2005. Besides, the micro-structure surface of self-leveling mortar was characterized by means of SEM to reflect the microscopic mechanism of the performance. The results showed the dispersible polymer powders could significantly improve performance of fluidity, adhesion property and abrasion resistance on cement-based self-leveling mortar; Meanwhile, there is no bad impact on its compressive strength and flexural strength. This study has guiding significance for the construction and application of cement based self-leveling mortar.


2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


2011 ◽  
Vol 219-220 ◽  
pp. 1601-1607 ◽  
Author(s):  
Tammam Merhej ◽  
Xin Kai Li ◽  
De Cheng Feng

This paper presents the experimental investigation carried out to study the behavior of polypropylene fiber reinforced concrete (PPFRC) under compression and flexure. Crimped polypropylene fibers and twisted polypropylene fiber were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. The influence of the volume fraction of each shape of polypropylene fiber on the compressive strength and flexural strength is presented. Empirical equations to predict the effect of polypropylene fiber on compressive and flexural strength of concrete were proposed using linear regression analysis. An increase of 27% in flexural strength was obtained when 0.6% volume fraction of twisted polypropylene fiber was added. It was also found that the contribution of fiber in flexural strength is more effective when twisted fibers were used. The compressive strength was found to be less affected by polypropylene fiber addition.


Sign in / Sign up

Export Citation Format

Share Document