Analysis of Bearing Capacity of New-Type Formwork Support Frame

2013 ◽  
Vol 341-342 ◽  
pp. 1449-1452
Author(s):  
Qing Dun Zeng ◽  
Fang Liu

Various new type scaffolds have been introduced and developed in China. They are novel in structure and economic in material, but their security and reliability can not be ignored. This paper introduced a new chained formwork support frame with nine upright tubes and many cross-braced connections. Firstly, the load test of the support frame was performed in order to observe the failure process and to determine the ultimate bearing capacity. Then, the strength and stability of both single upright tube and a cross-braced rod were checked according to the existing specifications on scaffolds. Finally, a finite element software ANSYS was used to establish a solid model for the support frame. The structural stability was analyzed and the ultimate bearing capacity was calculated. The comparison between the computational and experiment results was carried out. The results show that the ultimate bearing capacity of the new chained formwork support frame is controlled by the structural stability.

2011 ◽  
Vol 250-253 ◽  
pp. 2271-2275
Author(s):  
Cheng Wang ◽  
Qi Zhang

Vertical static load test is widely used in the determination of pile bearing capacity, the mathematical model used to fit test pile data in determining the bearing capacity is essential. From the perspective of analytic geometry, the paper analyzes the traditional method of hyperbola, of which the asymptotic line of equilateral hyperbola was used to determine the ultimate bearing capacity. By extending the equal-axed conditions, a more general form of hyperbolic equation is derived and feasibility of such method is also analyzed, which indicates that the maximum point of curvature in such hyperbolic curve can determine the ultimate bearing capacity and such method is proved to be reasonable in practical projects.


This paper discusses the Ultimate Bearing Capacity of a stabilized soil by using the fly ash, stone dust and rubber powder for design of a pavement. This paper will help in utilization of locally available waste materials to reuse in the subbase and subgrade layers of pavement. Rubber powder is a waste byproduct generated from the recycling of tires, and is not so easy for degradable, and hence leads to release of harmful gases when it tends to burn. Stone dust is a locally available waste generated product from quarries. The generation of stone dust is increasing day to day in large quantity. The huge quantity of stone dust storage amount will affect the quality of soil. Fly ash is waste combusted coal ash powder generated from the steamers of coal boilers with the burning of fuel gases together. In the sub grade layer the soil is mixed in different proportions with stone dust for hard foundation. In the sub base layer the soil is stabilized with the combination of rubber powder and fly ash. When the rubber powder and fly ash, mixed with water for compaction generates a bond between the soil particles to settle the air fields. In this paper various percentages of rubber powder, stone dust and fly ash with different samples for pavement is layered, and after that plate load test is conducted upon it.


2020 ◽  
Vol 198 ◽  
pp. 02017
Author(s):  
Zhongju Feng ◽  
Shaofen Bai ◽  
Wu Min ◽  
Jingbin He ◽  
Zhouyi Huang ◽  
...  

In order to study the influence of steep slope-karst coupling on the vertical bearing characteristics of pile foundation, the orthogonal simulation tests of pile foundation under 4 different roof thickness and 5 different slope are carried out by using Marc finite element software, and the correction coefficient of vertical partial bearing capacity of pile foundation according to roof thickness and slope is put forward. The test results show that when the thickness of the roof is more than 3 times the pile diameter, the ultimate bearing capacity of the pile foundation tends to be stable, and the value is about 19% when the slope is 45°; the ultimate bearing capacity of the pile foundation decreases gradually with the increase of the slope, and the reduction reaches 29.83% when the slope is greater than 45°. According to the calculation results, the variation law of vertical partial bearing capacity of pile foundation is analyzed, and the calculation formula of standard value of vertical ultimate bearing capacity of pile foundation in steep slope karst area considering both roof thickness and slope is put forward, and the correction coefficients αi and β are put forward.


2018 ◽  
Vol 27 (1) ◽  
pp. 096369351802700
Author(s):  
Xiong Xueyu ◽  
Wang Yiqingzi ◽  
Xue Rongjun ◽  
Lu Xuanxing

As Chinese architecture masterpiece, ancient Hui-style architecture is the admiration for Chinese and foreign master builders. According to the bending test, the theoretical calculations and Abaqus finite element analysis on 5 Hui-style architecture beams, this paper points out the differences between un-reinforced beams and reinforced beams on ultimate bearing capacity, deflection and other performance indicators. The reinforcement methods of embedding steel bars, embedding CFRP bars and pasting CFRP plate can respectively improve the ultimate bearing capacity by 20.2%, 32.6% and 37.0%. Based on the plane section assumption and considering thereduction of tensile strength causedby wood knots and defects in tension zone, this paper predicts failure modes of the test beams may occur, and gives the ultimate bearing capacity of different failure modes. In addition, this paper uses the Abaqus finite element software for simulating test beams, and the development trend of load-deflectioncurve between the test and numerical simulation are in good agreement, providing reference for further research of Hui-style architecture.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1098 ◽  
Author(s):  
Xuetao Lyu ◽  
Yang Xu ◽  
Qian Xu ◽  
Yang Yu

This study investigated the axial compressive performance of six thin-walled concrete-filled steel tube (CFST) square column specimens with steel bar stiffeners and two non-stiffened specimens at constant temperatures of 20 °C, 100 °C, 200 °C, 400 °C, 600 °C and 800 °C. The mechanical properties of the specimens at different temperatures were analyzed in terms of the ultimate bearing capacity, failure mode, and load–displacement curve. The experiment results show that at high temperature, even though the mechanical properties of the specimens declined, leading to a decrease of the ultimate bearing capacity, the ductility and deformation capacity of the specimens improved inversely. Based on finite element software ABAQUS, numerical models were developed to calculate both temperature and mechanical fields, the results of which were in good agreement with experimental results. Then, the stress mechanism of eight specimens was analyzed using established numerical models. The analysis results show that with the increase of temperature, the longitudinal stress gradient of the concrete in the specimen column increases while the stress value decreases. The lateral restraint of the stiffeners is capable of restraining the steel outer buckling and enhancing the restraint effect on the concrete.


2010 ◽  
Vol 163-167 ◽  
pp. 3600-3603
Author(s):  
Ying Li ◽  
Dong Zi Pan ◽  
Lian Zhang

Self-locked anchor is a new type of underreamed anchor, and which is more and more frequently used in both new construction and structural retrofitting or strengthening projects. Nevertheless, current design codes do not contain suitable design recommendations for these anchors. This study investigates the anchorage mechanisms of self-locked anchor under combined tension and shear loadings. The experimental parameters mainly include anchor diameters (Φ16 and Φ20) and loading angles (0°, 30°, 45°, and 60°). The present results indicate the characters of axial and transverse deformations, the ultimate bearing capacity, the fracture pattern of anchor, and the breakout model of concrete.


2011 ◽  
Vol 243-249 ◽  
pp. 294-297
Author(s):  
Rui Tao Zhu

Utilizing general finite element software ANSYS, the finite element computing model of the steel spatial tubular joint is built, which is used to analyze the mechanical properties under dead loads through changing its design parameters. According to the obtained and compared consequences, the different design parameters including stiffening ring thickness, cross-shaped ribbed plate thickness and stiffening ring length exert different influence on ultimate bearing capacity of the steel spatial tubular joint. Specifically, the ultimate bearing capacity under dead loads is affected by setting stiffening ring and changing cross-shaped ribbed plate thickness significantly. In contrast, if the thickness and length of stiffening ring are changed, the impact is insignificant. The results and conclusion can provide reference which is useful to optimize the design of steel spatial tubular joint in such category.


2021 ◽  
Vol 13 (23) ◽  
pp. 13166
Author(s):  
Xusen Li ◽  
Jiaqiang Zhang ◽  
Hao Xu ◽  
Zhenwu Shi ◽  
Qingfei Gao

Prestressed high-strength concrete (PHC) pipe piles have been widely used in engineering fields in recent years; however, the influencing factors of their ultimate bearing capacity (UBC) in multilayer soil need to be further studied. In this paper, a static load test (SLT) and numerical analysis are performed to obtain the load transfer and key UBC factors of pipe piles. The results show that the UBC of the test pile is mainly provided by the pile shaft resistance (PSR), but the pile tip resistance (PTR) cannot be ignored. Many factors can change the UBC of pipe piles, but their effects are different. The UBC of the pipe pile is linearly related to the friction coefficient and the outer-to-inner diameter ratio. Changes in the pile length make the UBC increase sharply. Low temperatures can produce freezing stress at the pile–soil interface. The effect of changing the Young modulus of pile tip soil is relatively small.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lan Jiang ◽  
Kejian Ma ◽  
Huagang Zhang ◽  
Qin Wu ◽  
Hongna Lu ◽  
...  

As a new type of floor structure, steel vierendeel sandwich plates are widely applied in large-span buildings with multiple storeys. Shear connectors are important stressed members of such plates. To evaluate the seismic performance of the shear connectors, a full-scale test piece in two different connection forms, namely, A and B, is designed and tested under alternating load. Test analysis of the two connection specimens covers the failure modes, hysteresis curves, and main parameters (e.g., bearing capacity, ductility, stiffness degradation, and energy dissipation coefficient). The following results concerning type A connection are obtained: First, it exhibits good ductility and long yielding platform; second, elastoplasticity of steel is fully exerted with it; third, it absorbs and dissipates energy well with strong energy consumption; and fourth, when failure occurs, cracks usually happen in the heat-affected zone of the weld in the core zone. The following conclusions about type B are drawn: first, it has large bearing capacity with high stiffness; also, when failure occurs, the ribbed stiffeners crack and flexion deformity happen.


2014 ◽  
Vol 578-579 ◽  
pp. 602-605
Author(s):  
Le Huan Xu ◽  
Feng Liu ◽  
Shuang Shuang Meng

This article established the oblique beam system supported by knee brace in portal frame by using finite element software ANSYS. We analysed the ultimate bearing capacity of the system, and discussed the effects of purlin stiffness and knee brace layout on the bearing capacity of the structure. Preliminary analysis shows that, increasing the number of knee brace or improving purlin stiffness can improve ultimate bearing capacity of the system.


Sign in / Sign up

Export Citation Format

Share Document