Design and Implementation of Intelligent Vehicle Control System Based on Camera Sensor

2013 ◽  
Vol 347-350 ◽  
pp. 666-671
Author(s):  
Shubra Deb Das ◽  
Jue Yang ◽  
Muktadir Rahman Chowdhury ◽  
Mary Cindy Ah Kioon

In this paper we propose a intelligent vehicle system design with MK60N512VMD100 as the micro-controller unit and CMOS image sensor to obtain image information of the track. Our proposed comparator circuit instead of an A/D conversion to obtain the binary image enables us to achieve a bigger field of view and a higher processing speed. A unique algorithm to extract track information and to successfully extract the black guide line is devised. We also design a PID closed-loop control to adjust the rotate speed of driving electromotor and direction of steering electromotor. The results indicate that our design proposal is feasible. The intelligent vehicle could successfully achieve a high speed, while maintaining an excellent stability.

Author(s):  
Janik Schaude ◽  
Maxim Fimushkin ◽  
Tino Hausotte

AbstractThe article presents a redesigned sensor holder for an atomic force microscope (AFM) with an adjustable probe direction, which is integrated into a nano measuring machine (NMM-1). The AFM, consisting of a commercial piezoresistive cantilever operated in closed-loop intermitted contact-mode, is based on two rotational axes, which enable the adjustment of the probe direction to cover a complete hemisphere. The axes greatly enlarge the metrology frame of the measuring system by materials with a comparatively high coefficient of thermal expansion. The AFM is therefore operated within a thermostating housing with a long-term temperature stability of 17 mK. The sensor holder, connecting the rotational axes and the cantilever, inserted one adhesive bond, a soldered connection and a geometrically undefined clamping into the metrology circle, which might also be a source of measurement error. It has therefore been redesigned to a clamped senor holder, which is presented, evaluated and compared to the previous glued sensor holder within this paper. As will be shown, there are no significant differences between the two sensor holders. This leads to the conclusion, that the three aforementioned connections do not deteriorate the measurement precision, significantly. As only a minor portion of the positioning range of the piezoelectric actuator is needed to stimulate the cantilever near its resonance frequency, a high-speed closed-loop control that keeps the cantilever within its operating range using this piezoelectric actuator further on as actuator was implemented and is presented within this article.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


2014 ◽  
Vol 989-994 ◽  
pp. 3062-3069
Author(s):  
Heng Du ◽  
Bin Huang ◽  
Lin Wang ◽  
Shu Mei Chen

In the research and development of the precise closed-loop control system in large hydraulic press, the touch screen and PLC are frequently applied to design, debug and test for the system. Though a better closed-loop control characteristic can be acquired after repeated testing by this way, the comprehensive state data of hydraulic press are unable to get, which leads to a long research cycle and also restricts the maintenance and upgrade with the equipment in the later period. In order to obtain the whole state information of hydraulic press easily and effectively, a monitor system of precise closed-loop control in large hydraulic press is designed. Based on reasonable cooperation of sensors and high-speed data-acquisition card, high-speed and precise signal acquisition is realized. In addition, data-acquisition software program is designed base on LabVIEW, it can achieve the functions of collecting, storing, displaying and analyzing data. Through the real measuring and analyzing on a certain large ceramic hydraulic press, the status of key parameters can be acquired effectively during the whole pressing process. So the monitoring system supplies the significant data basis to the precise closed-loop control, accelerates the design and development of high characteristic precise closed-loop control and also strongly supports to the maintenance and upgrade with the equipments in the later period.


2010 ◽  
Vol 139-141 ◽  
pp. 1852-1855
Author(s):  
Cheng Xue ◽  
Yu Shi ◽  
Ding Fan ◽  
Hao Zhong ◽  
Ming Xiao Shi

Dual-bypass MIG welding (DB-GMAW) is a new kind of high speed MIG welding with three arcs. In order to monitor the weld process and control it, a high speed weld system of DB-GMAW was built. The system was run by LabVIEW programs, including getting data of system and control output signals. The test result of system showed that all equipments could be used in the same time. Beside images of weld pool and arc, the weld voltages and currents of every part had been acquired. The signals of bypass current and weld speed also had been input TIG welding sources and worktable motor successfully. Meanwhile, the high speed weld formation had a good quality, and all of these established the closed-loop control of high speed DB-GMAW.


2014 ◽  
Vol 678 ◽  
pp. 382-387
Author(s):  
Wu Dong ◽  
Hong Xia Bie

To implement intelligent vehicle control system based on magnetic field detection, automation navigation scheme based on difference algorithm is proposed. The feature of magnetic field of the road is analyzed, and layout method of sensors is proposed, and signals of magnetic field sensors are gathered and filtered, and road control strategy based on difference algorithm is proposed, and steering gear is used to implement cornering of intelligent vehicle, and position PID algorithm is used to implement speed control of intelligent vehicle. The experiment result shows that intelligent vehicle using this scheme can work steadily at high speed, and has higher practicability and is worth to be propagated in many fields.


2021 ◽  
pp. 1063293X2110019
Author(s):  
Fu-Shin Lee ◽  
Chen-I Lin ◽  
Zhi-Yu Chen ◽  
Ru-Xiao Yang

Based upon the CANopen communication protocol and the LabVIEW graphic programing procedures, this paper develops a closed-loop control architecture for a parallel three-axis (Delta) robotic arm mechanism. The accomplishments include prototyping a parallel three-axis robotic arm mechanism, assembling servomotors with associated encoders and gearsets, coding CANopen communication scripts for servomotor controllers and a host supervision GUI, coding forward/inverse kinematics scripts to compute the required servomotor rotations and the coordinates of a movable platform or the mechanism, coding tracking error compensation scripts for effective closed-loop griper control, and coding integration scripts to command and supervise the mechanism motion on the LabVIEW-based host GUI. During the development stage, this research designed and prototyped the parallel three-axis robotic arm mechanism based upon basic Delta robot kinematics. To control the mechanism effectively and accurately, this study implemented the CANopen communication protocol, which characterizes high speed and stable transmission. The protocol applies to the CANopen communication channels among the controllers and the host supervision GUI. On the LabVIEW development platform, the coded supervision GUI performs issuing/receiving messages to the CANopen-based controllers. The controllers excite the servomotors and actuate the parallel mechanism to track prescribed trajectories in a closed-loop control fashion. Meanwhile, an electromagnet attached to the movable platform of the robotic mechanism performs satisfactory picking/placing object actions.


1987 ◽  
Vol 107 (2) ◽  
pp. 271-278
Author(s):  
Tadashi Fukao ◽  
Akira Chiba ◽  
Mikihiko Matsui

2011 ◽  
Vol 467-469 ◽  
pp. 978-983
Author(s):  
Zhi Peng Ma ◽  
Xing Yu Zhao ◽  
Fu Jun Wang ◽  
Da Wei Zhang

To study the dynamic performance and control strategy of a kind of high speed precision positioning XY table with a new kind of decoupling mechanism, the electromechanical co-simulation model with three closed-loop control system using proportional–integral–derivative controller (PID controller) is constructed. By use of finite element analysis (FEA) and co-simulation method, the preloaded spring as the key component in the decoupling mechanism is optimized. The matching law of the spring stiffness and preload is presented. The decoupling mechanism influence on the dynamic performance of the XY table during the movement is fully discussed. Based on the electromechanical model, a three closed-loop control scheme with disturbance observer and feed-forward controller is proposed. Co-simulation results demonstrate the validity of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document