The Alculation Method of Stable Bearing Capacity of Portal Frame

2013 ◽  
Vol 351-352 ◽  
pp. 329-336 ◽  
Author(s):  
Xu Chen ◽  
Hui Min Li

In recent years, the portal frame structure in the actual project has been widely used, but using the finite element method calculation of stable bearing capacity of portal frame is more complex, and very difficult to the design and construction personnel. With the known stability of the cantilever column carrying capacity and the vertex of the lateral displacement under concentrated force, the establishment of the ratio of the portal frame stability capacity and the stability of the cantilever column carrying capacity both in the same concentrated force vertex lateral displacement than the relationship between the structural mechanics solver to seek out frame to the lateral displacement of the vertex under concentrated force, obtained by computing the stability capacity of the portal frame, and with the exact solution comparison and found that the methods of theoretical calculation results coincide with the exact solution, and then get an easy way of solving the portal frame stable bearing capacity. After numerical example, this method is simple, easy to master, and it has important reference value.

2012 ◽  
Vol 203 ◽  
pp. 325-328
Author(s):  
Xin Jie Chu

This paper analyzes the stability and structural optimization of self-elevating platform pile foundation, preliminarily discusses the method of analyzing the bearing capacity of the layer soil foundation, and establishes the numerical computation models for the whole platform, pile, pile shoe, etc. Besides, through these analyses, the pile structure is optimized, and the stress concentration in the joint between pile and pile shoe is reduced. Also, this study is of reference value for the analysis on the self-elevating platform pile foundation design and the platform operation stability.


2010 ◽  
Vol 163-167 ◽  
pp. 600-604
Author(s):  
Ke Dong Tang ◽  
Jian Fu ◽  
Jun Dai ◽  
Peng Zhang ◽  
Rui Feng Yu

According to the finite element analysis of a circulating fluidized bed boiler steel frame structure, the essay concludes to the calculation results of the main steel structure, moreover the structure and the composition of bars are adjusted and optimized which improve the safety of the structure reliability and reduce the volume of steel. All of the above contents have certain reference value on the similar structure.


2020 ◽  
Vol 3 (2) ◽  
pp. 467
Author(s):  
Swendrinata Suwardi ◽  
Andryan Suhendra

The Battered Pile  is one of the foundation designs that aims to increase the lateral bearing capacity of the foundation. Battered Pile are designed with a certain slope that aims to increase the lateral capacity of the soil. The type of soil used will affect the lateral capacity of the pole. Calculation of bearing capacity of the pile is carried out on the condition of clay and sand soils at slope 00 to +200. The calculation results will then be analyzed to understand the effects that occur. The calculation results will be presented in the p-y curve method. The use of this method is expected to make it easier to understand the characteristics of Battered Pile for soil conditions. Based on the analysis it was found that an increase in the  capacity of the pile up to 23% in the slope of 100 to 150. Sand soil in conditions below the surface of the ground water will have a linear carrying capacity and have a lower deflection value when compared to clay soil at a depth of 2 meters. But at a depth of 16 meters, clay has a point where it has a lower deflection value compared to sandy soil.AbstrakTiang pancang Battered Pile merupakan salah satu rekasaya fondasi yang bertujuan untuk meningkatkan daya dukung lateral fondasi. Tiang Battered Pile dipancang dengan kemiringan tertentu yang bertujuan untuk meningkatkan daya dukung lateral tanah. Jenis tanah yang digunakan akan mempengaruhi daya dukung lateral tiang. Perhitungan daya dukung tiang dilakukan pada kondisi tanah lempung dan tanah pasir pada kemiringan 00 hingga +200. Hasil perhitungan kemudian akan dianalisis untuk memahami pengaruh yang terjadi. Hasil perhitungan akan disajikan dalam metode p-y curve. Penggunaan metode ini diharapkan dapat memudahkan dalam memahami karakteristik tiang Battered Pile terhadap kondisi tanah. Berdasarkan analisis didapatkan bahwa terjadi peningkatan daya dukung tiang hingga 23% pada kemiringan 100 hingga 150. Tanah pasir pada kondisi di bawah permukaan air tanah akan mengalami kenaikan daya dukung secara linier  dan memiliki  nilai lendutan yang lebih kecil jika dibandingkan dengan tanah lempung pada kedalaman 2 meter. Tetapi pada kedalaman 16 meter, tanah lempung memiliki titik dimana memiliki nilai lendutan yang lebih kecil jika dibandingkan dengan tanah pasir.


2016 ◽  
Vol 6 (2) ◽  
pp. 4-9 ◽  
Author(s):  
Aleksey O. LUKIN ◽  
Vadim Yu. ALPATOV ◽  
Dmitriy D. CHERNYSHEV

The analysis of improving ways to test for load-bearing structures - metal beams with corrugated wall was conducted. Weak places, limiting their load-bearing capacity were determined. It was found that the criterion for determining the carrying capacity of thin-walled corrugated beam is its local resistance. The author's solution to increase the local stability of the corrugated wall beams was suggested. Author's solution is to give the corrugated wall of further extruded profile of different geometry. The influence of the shape and size of punching the wall on the carrying capacity of corrugated beams was determined. The studies confirming the effectiveness of the proposed constructive solutions increase the stability of the corrugated wall are conducted. Preliminary assessment of the degree of increase of the bearing capacity of the beam by punching its wall is obtained.


2014 ◽  
Vol 919-921 ◽  
pp. 637-640 ◽  
Author(s):  
Qi Zhang

The slope failure of high fill embankment have a large proportion under self-weight and external conditions,Because of the complexity of the soil deformation and stress,General methods such as the limit equilibrium and numerical analysis have their own limitations,The paper takes high fill subgrade engineering in Fujian province as the background.Adopting analytical method and finite element method calculate the stability coefficient and lateral displacement of high fill embankment slope.moreover,Making a comprehensive judgement to the stability of the slope by comparing with the actual value.The results show that calculation results of these two methods are close.Which can make accurate predictions on high slope stability and determine a judgement.and provides an effective method for the design and construction of the similar project.


2012 ◽  
Vol 487 ◽  
pp. 232-236
Author(s):  
Xu Feng Jiang ◽  
Meng Guo ◽  
Cheng Hao Wu

In order to enhance the anti-seismic performance of the frame structure and masonry structure with frame at bottom layer, combined shear wall consisting of frame and gridiron composite wall was proposed in this paper, and shear bearing capacity calculation method for the wall was researched. 1/2 scale frame-sparse gridiron composite walls were tested under reversed cyclic loading. Damage processes, load-bearing capacity and hysteretic curves characters of the walls were analyzed. Based on the experiments and reinforced concrete masonry walls data, the force features and shear resistance mechanism of the wall were analyzed, and general shear bearing capacity formula were put forward, and application methods under different conditions were given at the same time. Comparative analysis between calculation results and test results indicated that the formula was accurate enough, and can be referred to in the new construction and post-quake reconstruction of frame structure or masonry structure with frame at bottom layer.


2011 ◽  
Vol 65 ◽  
pp. 613-616
Author(s):  
Xin Jie Chu

This paper analyzes the stability and structural optimization of self-elevating platform pile foundation, preliminarily discusses the method of analyzing the bearing capacity of the layer soil foundation, and establishes the numerical computation models for the whole platform, pile, pile shoe, etc. Besides, through these analyses, the pile structure is optimized, and the stress concentration in the joint between pile and pile shoe is reduced. Also, this study is of reference value for the analysis on the self-elevating platform pile foundation design and the platform operation stability.


2011 ◽  
Vol 94-96 ◽  
pp. 868-871
Author(s):  
Wen Feng Du ◽  
Zhi Yong Zhou ◽  
Fu Dong Yu

Studies on the static stability and the ultimate bearing capacity of vierendeel latticed shells have been carried out. The buckling modal and the whole course of instability are shown using the Finite Element Method. The ultimate bearing capacity is compared with that of the single-layer latticed shell structure. The results show that the ultimate bearing capacity of the vierendeel latticed shells is 2.87 times more than that of the single-layer lattice shell in the condition of consuming the same steel. The vierendeel latticed shell structure not only has the advantages of concision and transparency like the single layer latticed shell structure, but also has the stability and carrying capacity like double-layer latticed shell structure.


2020 ◽  
Vol 9 (1) ◽  
pp. 70-77
Author(s):  
Amanda Rachmad Pratama ◽  
Rida Respati ◽  
Norseta Ajie Saputra

Soil bearing capacity is the ability of the soil to support the foundation load acting on it. To produce an accurate bearing capacity, it is necessary to know the properties and characteristics of the soil. For this reason, a comparison of the carrying capacity of the soil is carried out based on the calculation of CPT / Sondir and SPT to be able to plan a safe and economical pile foundation. The purpose of this study was to determine the amount of soil bearing capacity of the deep foundation in the environment around the Ataqwa Mosque, Baringin Village, Palangkaraya City based on field tests, and based on laboratory tests, and to determine the value of the comparison between the Mayerhof Method and the Schmertmann-Nottingham Method. Based on the Sondir value, it is continued with the calculation of the carrying capacity of the soil, then the calculation results are analyzed and concluded. From the calculation of the value of the carrying capacity of the foundation pile implementation of point 1 (one), the highest value of 400 mm diameter piles in the Meyerhoff method is 75,319 kg, while the lowest bearing capacity value is also at 400 mm piles of 10,676 kg. For point 2 (two), the highest value is obtained at 400 mm diameter piles in the Shmertmann-Nottingham method of 65,853 kg, while the lowest bearing capacity value is also at 400 mm piles of 10,676 kg


2019 ◽  
Vol 974 ◽  
pp. 529-534
Author(s):  
Alexej I. Pritykin ◽  
Ilja E. Kirillov

The article considers the local stability of hinged supported beams with a flexible wall, supported by paired stiffeners on the supports and loaded with a concentrated force in the middle of the span. To prevent the loss of stability of the wall from compression, another edge was installed in the area of ​​application of force. The materials considered as beams were steel, aluminum, and stainless steel. In this work, the beam material is steel C345. The study was conducted by analyzing the requirements of the Code of Practice for beams with a flexible wall in terms of the stability loss caused by the two types of deformations - shear and bending. By means of small simplifications, the requirements of the Code of Practice have been transformed into empirical dependencies convenient for practical calculations for estimating the critical loads on the beam. The finite element method with ANSYS software was used as an effective analysis tool. It has been established that in some cases the cause of loss of stability is a shift, and in others - a bend. A criterion for changing the forms of buckling was also obtained. The calculation results for the obtained dependences are in satisfactory agreement with the FEM and experimental data.


Sign in / Sign up

Export Citation Format

Share Document