Numerical Simulation of Post-Construction Deformation Characteristics of Storage Oil Tank Ground

2013 ◽  
Vol 353-356 ◽  
pp. 593-596 ◽  
Author(s):  
Yan Mei Zhang ◽  
Xu Dong Zhang

Ground soil was looked as porous medium, a three-dimensional finite element model of shell-liquid-foundation-ground was built, and the influence of soil parameters, filling liquid mode, and liquid height on the tank ground deformation was discussed. The research shows that the subsidence range caused by additional stress is the 0.3D range of the tank bottom edge outer; the influence of soil constrained modulus on settlement is remarkable, with constrained modulus decreasing, the tank ground settlement increases; with soil permeability coefficient decreasing, the tank ground settlement decreases; the ground settlement curve shape is decided by soil constrained modulus and permeability coefficient; the influence of filling liquid mode on the ground final settlement is very small ,but on the pore water pressure peak is remarkable.

2012 ◽  
Vol 204-208 ◽  
pp. 250-254
Author(s):  
Yan Mei Zhang ◽  
Xu Dong Zhang

The water filling preloading method is the common ground treatment method adopted to reinforce soft tank foundation. The influence laws of load speed, soil parameters on the reinforced effect of soft tank foundation were analyzed by the three-dimension finite element numerical analysis procedure. The research shows that the fovea deformation of single tank bottom under preload is similar to the pan bottom shape; the influence of soil constrained modulus on settlement is remarkable and it also affects the settlement time curve shape; when the constrained modulus is constant, with the permeability coefficient decreasing, the surface doming phenomenon around the tank foundation increases, and the range of upheaval is related to constrained modulus; the influence of loading function on the final settlement is very small, but the influence on pore water pressure is remarkable.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huasheng Sun ◽  
Jihua Zhang ◽  
Guodong Zhao ◽  
Hao Wang

Many researchers have investigated the effect of basement excavation on tunnel deformation. However, the influence of consolidation on the interaction of basement-tunnel-soil is rarely considered or systematically studied in clay. In this study, three-dimensional coupled-consolidation finite element analyses were conducted to investigate the effect of consolidation on the tunnel response to excavation. An advanced nonlinear constitutive model was adopted, and numerical parametric investigations were conducted to study the effect of the excavation depth, tunnel stiffness, soil permeability coefficient, and consolidation time on the tunnel response. The results revealed that the basement excavation led to stress release, which caused tunnel heave. Owing to the dissipation of excess negative pore water pressure, the tunnel heave further increased to become approximately twice as large compared with that observed when the foundation pit excavation had just been completed. As the consolidation time increased, the longitudinal tunnel heave and tunnel diameter change caused by the foundation pit excavation gradually increased, but the growth rate was slower down. When the consolidation time changed from 50 days to 150 days, the maximum tunnel heave at the crown and the maximum tunnel diameter change increased by 1.18 and 1.48 times, respectively. The soil’s permeability coefficient did not have a significant effect on the tunnel heave at the crown nor on the tunnel diameter change. The results obtained by this study are expected to be useful as an engineering reference for the analysis of soil structure problems in clay.


2021 ◽  
Vol 9 (2) ◽  
pp. 199
Author(s):  
Anderson Peccin da Silva ◽  
Andrea Diambra ◽  
Dimitris Karamitros ◽  
Shiao Huey Chow

This paper presents a new macro-element modelling framework for plate anchors which enables the effect of pore water pressure changes and the related evolution of soil strength during the process of cyclic loading and consolidation to be captured. The proposed modelling framework combines an advanced macro-element model for plate anchors, expanded to capture the cyclic loading behaviour, with a simple one-dimensional model of undrained shearing and consolidation for a soil element representative of the whole soil mass around the anchor. The representative soil element tracks the effects of changes in effective stress on the soil strength, which in turn governs the anchor capacity in the macro-element model. The two modelling components are linked through a mobilised capacity compatibility condition. It will be firstly shown that such modelling framework is able to capture the expected changes in an anchor’s capacity related to cyclic pore pressure generation and consolidation under one-dimensional cyclic loading of the anchor. Then, the model will be used to explore the plate anchor’s behaviour and failure mechanisms under loading conditions which mobilise its full three-dimensional cyclic loading capacity. The macro-element model will identify some conflicting mechanisms (i.e., the anchor’s kinematic/rotation and soil weakening/strengthening) governing the three-dimensional capacity of the anchor.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


Ground Water ◽  
2019 ◽  
Vol 58 (2) ◽  
pp. 278-290 ◽  
Author(s):  
Yun Zhang ◽  
Xuexin Yan ◽  
Tianliang Yang ◽  
Jichun Wu ◽  
Jianzhong Wu

2013 ◽  
Vol 50 (12) ◽  
pp. 1204-1218 ◽  
Author(s):  
A.K. Leung ◽  
C.W.W. Ng

Understanding seasonal hydrogeological responses of vegetated soil slopes is vital to slope stability because pore-water pressure (PWP) varies from positive values upon rainfall in wet seasons to negative values upon plant evapotranspiration (ET) in dry seasons. There are, however, few case histories that report seasonal performance of vegetated soil slopes. In this study, a vegetated slope situated in Hong Kong was instrumented to analyse (i) groundwater flow during rainfall in the wet season and (ii) effects of plant ET on PWP in the dry season. Two- and three-dimensional anisotropic transient seepage analyses are conducted to identify groundwater flow mechanism(s) during a heavy rainstorm. Through water and energy balance calculations, measured plant-induced suction is interpreted with plant characteristic and climatic data. During the rainstorm, substantial recharge of the groundwater table was recorded, likely due to preferential water flow along relict joints and three-dimensional cross-slope groundwater flow. During the dry season, the peak suction induced by plant ET is up to 200 kPa and the depth of influence is shallower than 200% of the root depth. For the range of suctions monitored, root-water uptake is revealed to have been restricted by suction not very significantly and was driven mainly by the climatic variation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ling Zeng ◽  
Jie Liu ◽  
Jun-hui Zhang ◽  
Han-bing Bian ◽  
Wei-hua Lu

The SEEP/W module of finite element software GEO-slope is used to analyze the effects of fracture depth, permeability coefficient ratio, fracture angle, and fracture number on the rainwater infiltration process. Moreover, the effect of fracture seepage anisotropy on slope stability is discussed combining with unsaturated seepage theory. The results show that the pore water pressure in the fracture increases rapidly with the rainfall until it changes from negative pressure to positive pressure. The greater the fracture depth is, the greater the pore water pressure in the fracture is, and the greater the infiltration depth at the time of rainfall stopping is. When the permeability coefficient is greater than the rainfall intensity, the permeability coefficient ratio has a great influence on the infiltration process of rainwater. The smaller the fracture angle is, the greater the maximum pore water pressure is in the fracture depth range, and the greater the depth of the positive pore water pressure is. However, with the increase of fracture angle, the infiltration depth decreases, and the range of the surface saturation area of slope increases obviously. With the increase of fracture density, the saturated positive pressure region is connected to each other in the slope. The influence range and the degree of the rainwater on the seepage field are larger and larger. There is a power relation between the saturation area and the fracture number, and also the concentration distribution of long fractures directly forms the large-connected saturated zone and raises groundwater. The range of the saturated zone and variation law of the pore water pressure under fracture seepage are obtained, which provide a reference for the parameter partition assignment of slope stability analysis under fracture seepage.


2020 ◽  
Vol 22 (2) ◽  
pp. 149-155
Author(s):  
Iskandar ◽  
Rabiya

Soil consolidation testing using an oedometer and rowe cell. Oedometers are often used on clay and soft soils. However, in the development of the rowe cell device, the results of lowering soft soil were better than the oedometer. The advantage of this rowe cell is that it can determine the saturation value of the soil samples tested. The rowe cell tester can measure the pore water pressure at the beginning and end of each consolidation stage. This rowe cell can provide suitable settlement for soft soils. This consolidation test to obtain soil parameters such as Cv and Cc by using the rowe cell tool. After that, from the test results, the two tools were compared.


2022 ◽  
Vol 12 (2) ◽  
pp. 567
Author(s):  
Young-Hak Lee ◽  
Jung-Hyun Ryu ◽  
Joon Heo ◽  
Jae-Woong Shim ◽  
Dal-Won Lee

In recent years, as the number of reservoir embankments constructed has increased, embankment failures due to cracks in aging conduits have also increased. In this study, a crack in a conduit was modeled based on the current conduit design model, and the risk of internal erosion was analyzed using a large-scale model test and three-dimensional deformation–seepage analysis. The results show that when cracks existed in the conduit, soil erosion and cavitation occurred near the crack area, which made the conduit extremely vulnerable to internal erosion. Herein, a model is proposed that can reduce internal erosion by applying a layer of sand and geotextiles on the upper part of the conduit located close to the downstream slope. In the proposed model, only partial erosion occurred inside the conduit, and no cavitation appeared near the crack in the conduit. The results suggest that internal erosion can be suppressed when the water pressure acting intensively on the crack in the conduit is dispersed by the drainage layer. To validate these results, the pore water pressure, seepage line, and hydraulic gradient were investigated to confirm the erosion phenomenon and reinforcement effect.


2004 ◽  
Vol 20 (03) ◽  
pp. 133-146
Author(s):  
Ivo Senjanovi ◽  
Smiljko Rudan ◽  
Ana Maria Ljustina

The work describes independent tanks of different shapes, which are further subdivided into A, B, and C types related to design pressure. Special attention is paid to the remedy for misalignment resulting from manufacturing difficulties in a 3,000-m3 bilobe cargo tank of a 8,350-m3 liquefied petroleum gas (LPG) carrier. Namely, some eccentricity in the Y joint of tank shells and longitudinal bulkhead usually remains during fabrication, which causes additional stress concentration. This problem is first considered analytically and then numerically. A complete and reliable solution is achieved by a three-dimensional finite element method analysis of a tank segment between two vacuum rings. Reinforcement of the Y joint by a set of knees and bars, according to the value of the shell's eccentricity, is recommended in order to reduce the stress level below the allowable value. The obtained results are presented in a practical diagram for general use. Following the given instructions, the cargo tanks of the considered LPG are reinforced and submitted to the hydraulic test with water pressure 50% higher than the design pressure. Having passed this test successfully, the approval of the relevant classification society is obtained.


Sign in / Sign up

Export Citation Format

Share Document