Numerical Simulation Analysis of Hole Shape Design of Self-Thermal Insulation Perforated Brick

2013 ◽  
Vol 357-360 ◽  
pp. 1089-1092
Author(s):  
Xiao Ping Feng ◽  
Yong Fu Yu ◽  
Bo Jiang ◽  
Wei Bai

The hole shape design of perforated brick directly affects thermal insulation performance of wall. In order to study the influence of shape, size and configuration of perforated brick on the insulation performance, six kinds of perforated brick with different hole shape were designed, and their temperature field were simulated with finite element method. The results show that the insulation performance of perforated brick with square hole is the best. Filling brick holes with thermal insulation materials can improve the insulation performance of perforated brick, Besides; The thermal conductivity of perforated brick affects its thermal resistance, so brick materials with low thermal conductivity should be developed for the achievement of energy-saving standard of wall thermal resistance.

2020 ◽  
Vol 19 (03) ◽  
pp. 1950021
Author(s):  
Shangyan Wen ◽  
Jiayi Zhu ◽  
Qiang Yin ◽  
Yutie Bi ◽  
Hongbo Ren ◽  
...  

The infrared opacifiers loaded Al2O3 aerogel-SiO2 fiber mat composites were fabricated by the sol–gel process. The effects of the content of the TiO2 and SiC particles on thermal insulation performance of the Al2O3 aerogel-SiO2 fiber mat composites were studied. The results showed that the optimum doping content of TiO2 and SiC for Al2O3 aerogel-SiO2 fiber mat composites were 10[Formula: see text]mol.% and 0.5[Formula: see text]mol.%, respectively. The optimum TiO2-Al2O3 aerogel-SiO2 fiber mat composite had the low thermal conductivity of 0.021[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 35∘C and 0.031[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 600∘C. Meanwhile, the SiC-Al2O3 aerogel-SiO2 fiber mat composite also had the low thermal conductivity of 0.022[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 35∘C and 0.025[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 600∘C.


2017 ◽  
Vol 17 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ali Afzal ◽  
Sheraz Ahmad ◽  
Abher Rasheed ◽  
Faheem Ahmad ◽  
Fatima Iftikhar ◽  
...  

Abstract The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Zipeng Qin ◽  
Gang Li ◽  
Yan Tian ◽  
Yuwei Ma ◽  
Pengfei Shen

The effects of fly ash, sodium carbonate content, foaming temperature and foaming time on foam glass aperture sizes and their distribution were analyzed by the orthogonal experimental design. Results from the steady-state method showed a normal distribution of the number of apertures with change in average aperture, which ranges from 0.1 to 2.0 mm for more than 93% of apertures. For a given porosity, the thermal conductivity decreases with the increase of the aperture size. The apertures in the sample have obvious effects in blocking the heat flow transmission: heat flow is quickly diverted to both sides when encountered with the aperture. When the thickness of the sample is constant, the thermal resistance of the foam glass sample increases with increasing porosity, leading to better thermal insulation. Furthermore, our results suggest that the more evenly distributed and orderly arranged the apertures are in the foam glass material, the larger the thermal resistance of the material and hence, the better the thermal insulation.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2626
Author(s):  
Aurelia Blazejczyk ◽  
Cezariusz Jastrzebski ◽  
Michał Wierzbicki

This article introduces an innovative approach to the investigation of the conductive–radiative heat transfer mechanism in expanded polystyrene (EPS) thermal insulation at negligible convection. Closed-cell EPS foam (bulk density 14–17 kg·m−3) in the form of panels (of thickness 0.02–0.18 m) was tested with 1–15 µm graphite microparticles (GMP) at two different industrial concentrations (up to 4.3% of the EPS mass). A heat flow meter (HFM) was found to be precise enough to observe all thermal effects under study: the dependence of the total thermal conductivity on thickness, density, and GMP content, as well as the thermal resistance relative gain. An alternative explanation of the total thermal conductivity “thickness effect” is proposed. The conductive–radiative components of the total thermal conductivity were separated, by comparing measured (with and without Al-foil) and simulated (i.e., calculated based on data reported in the literature) results. This helps to elucidate why a small addition of GMP (below 4.3%) forces such an evident drop in total thermal conductivity, down to 0.03 W·m−1·K−1. As proposed, a physical cause is related to the change in mechanism of the heat transfer by conduction and radiation. The main accomplishment is discovering that the change forced by GMP in the polymer matrix thermal conduction may dominate the radiation change. Hence, the matrix conduction component change is considered to be the major cause of the observed drop in total thermal conductivity of EPS insulation. At the microscopic level of the molecules or chains (e.g., in polymers), significant differences observed in the intensity of Raman spectra and in the glass transition temperature increase on differential scanning calorimetry(DSC) thermograms, when comparing EPS foam with and without GMP, complementarily support the above statement. An additional practical achievement is finding the maximum thickness at which one may reduce the “grey” EPS insulating layer, with respect to “dotted” EPS at a required level of thermal resistance. In the case of the thickest (0.30 m) panels for a passive building, above 18% of thickness reduction is found to be possible.


2014 ◽  
Vol 788 ◽  
pp. 689-692
Author(s):  
Hong Guo ◽  
Yuan Yuan Han ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ye Ming Fan ◽  
...  

The effect of diamond shape on the thermal conductivity of diamond/Cu composites was studied by combine finite element method with the tests. The finite element result show that the thermal conductivity of the hexoctahedron diamond/Cu composites and the square diamond/Cu composites is 819 W/m·K and 1013 W/m·K respectively. And the testing results indicate that the thermal conductivity of the single hexoctahedron diamond/Cu composites and the hexoctahedron mixed with the square diamond/Cu composites is 659W/m·K and 720 W/m·K respectively. The testing results consist with the finite element calculation. Under the same circumstances, more {100} faces can bring in less overall thermal resistance in the composites thus improve the thermal conductivity of the composites. The results show that using square diamond particles helps to improve the thermal conductivity of diamond/Cu composites.


2012 ◽  
Vol 174-177 ◽  
pp. 3027-3030
Author(s):  
Wei Wei ◽  
Ming Zhong Wang ◽  
Jun Pan

In order to avoid the heat transfixion among users in the concentration area of the water source heat pump, a suitable layout of pumps for drawing and recharging wells is required. Finite element method is adopted to establish the numerical model of groundwater temperature to predict the change trend of water temperature. The results of the simulation indicate that the groundwater temperature change from 6.3 to 14.2 °C in winter, and from 11.5 to 21.2 °C in summer. These results meet the requirements of the drawing and recharging water in the water source heat pump engineering and are able to avoid the heat transfixion among users. The effect of drawing and recharging water in the water source heat pump engineering to the changes of the groundwater’s temperature field can be analyzed quantitatively through establishing the proper numerical simulation which provides a reference to scientifically design the layout of pumps for drawing and recharging water.


2021 ◽  
Vol 346 ◽  
pp. 03049
Author(s):  
Alexander Denisenko ◽  
Roman Grishin ◽  
Liubov Podkruglyak

The use of the temperature criterion in the design of metal-cutting machines, determined on the basis of models that take into account the contact thermal resistances, is an objective necessity. These models should take into account to the maximum extent the actual conditions of contact of parts in the design under consideration, determined by the deviations of the mating surfaces from the ideal shape. The article presents the results of numerical modeling based on the finite element method of the formation of the contact thermal resistance and the evaluation of the influence of the parameters of the intermediate layer (pseudo-environment) that occurs in the contact zone of surfaces with macro-deviations on the passage of the heat flow. The obtained results allowed us to identify the most significant of the considered parameters. It is established that when modeling a pseudo-environment, it is necessary to take into account the coefficient of its thermal conductivity, the size, location and integrity of the actual contact zone.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012070
Author(s):  
Kaiben Yu ◽  
Le Zong ◽  
Shengqi Yu ◽  
Qingjian Meng ◽  
Baohua Liu

Abstract In this paper, a thermal insulation structure with silica aerogel felt as filler material was designed for the requirements of deep-sea fluid thermal insulation sampling technology for Jiaolong human occupied vehicle. Simulation analysis of thermal insulation performance was carried out and an experimental prototype was developed for the thermal insulation structure. Experimental study on thermal insulation performance was conducted with the variation characteristics of the operation environment for Jiaolong human occupied vehicle being taken into account. Results show that the silica aerogel felt with a thickness of 30 mm filled in the radial space between the inner and outer cylinders can achieve the expected thermal insulation effect during the diving-sampling-transferring process, with maximum temperature rise of 8.5 °C, and can meet the requirements of deep-sea fluid thermal insulation sampling technology.


Sign in / Sign up

Export Citation Format

Share Document