The Synthesis and Application of a Novel Class of Polyols for Preparation of Polyurethane

2013 ◽  
Vol 357-360 ◽  
pp. 1441-1445
Author(s):  
Xiao Lin Li ◽  
Zheng Fang ◽  
Dong Ji ◽  
Zhi Dong Wan ◽  
Kai Guo

The synthesis of a novel class of diamine-based polyols derivatives and the potentials and the limitations of these polyols were reported. This class of diamine-based polyols with high hydroxyl values and no acid values can be used in rigid polyurethane foams. The prepared rigid foams show the properties of low density, high closed cell content, low thermal conductivity, and high compressive strength.

2009 ◽  
Vol 1188 ◽  
Author(s):  
Min Liu ◽  
Zoran S. Petrovic ◽  
Yijin Xu

AbstractStarting from a bio-based polyol through modification of soybean oil, BIOH™ X-210, two series of bio-based polyurethanes-clay nanocomposite foams have been prepared. The effects of organically-modified clay types and loadings on foam morphology, cell structure, and the mechanical and thermal properties of these bio-based polyurethanes-clay nanocomposite foams have been studied with optical microscopy, compression test, thermal conductivity, DMA and TGA characterization. Density of nanocomposite foams decreases with the increase of clay loadings, while reduced 10% compressive stress and yield stress keep constant up to 2.5% clay loading in polyol. The friability of rigid polyurethane-clay nanocomposite foams is high than that of foam without clay, and the friability for nanofoams from Cloisite® 10A is higher than that from 30B at the same clay loadings. The incorporation of clay nanoplatelets decreases the cell size in nanocomposite foams, meanwhile increases the cell density; which would be helpful in terms of improving thermal insulation properties. All the nanocomposite foams were characterized by increased closed cell content compared with the control foam from X-210 without clay, suggesting the potential to improve thermal insulation of rigid polyurethane foams by utilizing organically modified clay. Incorporation of clay into rigid polyurethane foams results in the increase in glass transition temperature: the Tg increased from 186 to 197 to 204 °C when 30B concentration in X-210 increased from 0 to 0.5 to 2.5%, respectively. Even though the thermal conductivity of nanocomposite foams from 30B is lower than or equal to that of rigid polyurethane control foam from X-210, thermal conductivity of nanocomposite foams from 10A is higher than that of control at all 10A concentrations. The reason for this abnormal phenomenon is not clear at this moment; investigation on this is on progress.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5161
Author(s):  
Maria Kurańska ◽  
Elżbieta Malewska ◽  
Krzysztof Polaczek ◽  
Aleksander Prociak ◽  
Joanna Kubacka

In order to create greener polyurethane (PUR) foams, modified used cooking oils (UCO) were applied as starting resources for the synthesis of bio-polyols. The bio-polyols were produced using transesterification of UCO with diethylene glycol (UCO_DEG) and triethanolamine (UCO_TEA). Next, open-cell PUR foams were synthesized by replacing 20, 40, 60, 80 and 100% of the petrochemical polyol with the bio-polyol UCO_DEG or UCO_TEA. It was observed that an increasing bio-polyol content (up to 60%) led to an increase of the closed cell content. However, a further increase in the bio-polyol content up to 100% resulted in foam cell opening. The bio-foams obtained in the experiment had an apparent density of 13–18 kg/m3. The coefficient of thermal conductivity was determined at three different average temperatures: 10, 0 and −10 °C. The PUR bio-foams modified with bio-polyol UCO_TEA had lower values of thermal conductivity, regardless of the average temperature (35.99–39.57 mW/m·K) than the foams modified with bio-polyol UCO_DEG (36.95–43.78 mW/m·K). The compressive strength of most of the bio-foams was characterized by a higher value than the compressive strength of the reference material (without bio-polyol). Finally, it was observed that the bio-materials exhibited dimensional stability at 70 °C.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 738 ◽  
Author(s):  
Aiga Ivdre ◽  
Arnis Abolins ◽  
Irina Sevastyanova ◽  
Mikelis Kirpluks ◽  
Ugis Cabulis ◽  
...  

Developing polyols derived from natural sources and recycling materials attracts great interest for use in replacing petroleum-based polyols in polyurethane production. In this study, rigid polyurethane (PUR) foams with various isocyanate indices were obtained from polyols based on rapeseed oil and polyethylene terephthalate (RO/PET). The various properties of the prepared PUR foams were investigated, and the effect of the isocyanate index was evaluated. The closed-cell content and water absorption were not impacted by the change of the isocyanate index. The most significant effect of increasing the isocyanate index was on the dimensional stability of the resulting foams. This is due to the increased crosslink density, as evidenced by the increased formation of isocyanurate and increase of the glass transition temperature. Additionally, the influence on compression strength, modulus, and long-term thermal conductivity were evaluated and compared with reference PUR foams from commercially available polyols. Rigid PUR foams from RO/PET polyol were found to be competitive with reference materials and could be used as thermal insulation material.


2021 ◽  
pp. 026248932110171
Author(s):  
Chunhui Li ◽  
Haihong Ma ◽  
Congqiang Song ◽  
Zhengfa Zhou ◽  
Weibing Xu ◽  
...  

Melamine-formaldehyde (MF)rigid foams with high closed cell content were prepared via oven heating process, using MF prepolymer prepared from melamine and paraformaldehyde as a matrix, cyclohexane as the foaming agent, dimethyl silicon oil as the foam stabilizers, hydrochloric acid as the catalyst. The effect of MF prepolymer viscosity, foaming temperature, amount of catalyst on morphology, closed cell content, apparent density, water absorption and compressive strength of MF rigid foams were systematically studied. The optimized foaming conditions are as follows: the viscosity of MF prepolymer ranges from 35 Pa·s to 45 Pa·s, the foaming temperature is 125°C and the content of the catalyst is 0.65 wt%. The as-prepared MF foams showed the best comprehensive performance with closed cell content of 83.5%, apparent density of 62 kg·m−3, water absorption of 12.0%, compressive strength of 292kPa, thermal conductivity of 0.033 W m−1 K−1 and limiting oxygen index (LOI) of 36%. Compared to conventional organic foams, MF rigid foams possess low water absorption, excellent thermal insulation and flame retardancy due to high closed cell content, and can be expected to be used as thermal insulation material for building exterior walls.


2020 ◽  
Vol 22 (1) ◽  
pp. 69
Author(s):  
Joanna Paciorek-Sadowska ◽  
Marcin Borowicz ◽  
Ewelina Chmiel ◽  
Jacek Lubczak

Two polyol raw materials were obtained in the conducted research, one based on metasilicic acid (MSA), the other based on poly(lactic acid) (PLA) waste. The obtained polyols were characterized in terms of their applicability for the production of rigid polyurethane foams (RPUFs). Their basic analytical properties (hydroxyl number, acid number, elemental analysis) and physicochemical properties (density, viscosity) were determined. The assumed chemical structure of the obtained new compounds was confirmed by performing FTIR and 1H NMR spectroscopic tests. Formulations for the synthesis of RPUFs were developed on the basis of the obtained research results. A mixture of polyols based on MSA and PLA in a weight ratio of 1:1 was used as the polyol component in the polyurethane formulation. The reference foam in these tests was a foam that was synthesized only on the basis of MSA-polyol. The obtained RPUFs were tested for basic functional properties (apparent density, compressive strength, water absorption, thermal conductivity coefficient etc.). Susceptibility to biodegradation in soil environment was also tested. It was found that the use of mixture of polyols based on MSA and PLA positively affected the properties of the obtained foam. The polyurethane foam based on this polyol mixture showed good thermal resistance and significantly reduced flammability in comparison with the foam based MSA-polyol. Moreover, it showed higher compressive strength, lower thermal conductivity and biodegradability in soil. The results of the conducted tests confirmed that the new foam was characterized by very good performance properties. In addition, this research provides information on new waste management opportunities and fits into the doctrine of sustainable resource management offered by the circular economy.


2020 ◽  
pp. 026248932092923
Author(s):  
Chunhui Li ◽  
Haihong Ma ◽  
Zhengfa Zhou ◽  
Weibing Xu ◽  
Fengmei Ren ◽  
...  

Toughing melamine-formaldehyde (MF) rigid closed-cell foams were prepared by using ethylene glycol (EG) and carbon fiber (CF) as composite toughening agents. The pulverization rate, compressive strength, bending strength, cellular structure, closed-cell ratio, water absorption ratio, thermal conductivity, thermal stability, limiting oxygen index (LOI), and char yield were characterized to study the morphology, mechanical, thermal, and fire-retardant properties of as-prepared toughing MF rigid foams. The pulverization rate result showed that introduction of composite modifier can obviously improve the toughness of MF rigid foams. The cellular structure, closed-cell ratio, and water absorption results showed that the addition of EG/CF can increase the closed-cell ratio and control the cell size of MF rigid foams. The compressive strength and bending strength results showed that the incorporation of composite modifier of MF rigid foams dramatically improved the mechanical properties. The LOI, char yield, and thermal stability results showed that the toughing MF rigid foams remained more intact char skeleton with flame-retardant effect, thus reducing the fire hazards. The as-prepared toughing MF rigid foams showed the best comprehensive performance with pulverization rate of 5.21%, compressive strength of 355.3 kPa, bending strength of 0.44 MPa, closed-cell ratio of 79.1%, water absorption of 9%, thermal conductivity of 0.031 W m−1 K−1, and LOI of 39.6%. Compared with unmodified MF rigid foams, toughing rigid closed-cell MF foams possess excellent pulverization rate, compressive strength, bending strength, cellular structure, thermal insulation, and flame retardancy.


Sign in / Sign up

Export Citation Format

Share Document