Low-Temperature Cracking Analysis of Asphalt Pavement

2013 ◽  
Vol 361-363 ◽  
pp. 1625-1628
Author(s):  
Zhao Sheng Li ◽  
Yi Qiu Tan

Establish the mechanical model of asphalt pavement low-temperature cracking, analysis the factors leading to cracking. The factors such as shrinkage coefficient of asphalt pavementtemperature stresspavement structure combination forms and temperature contribution affect the asphalt pavement on cracking behavior. Study the effect of aggregate gradation type on asphalt mixture temperature shrinkage coefficient, analyze shows that in case of the same skeleton type, the smaller the average particle size of aggregate is, the larger low-temperature shrinkage deformation of mixture is; increasing the amount of coarse aggregate can form the dense structure of skeletonreduce the shrinkage coefficient at low temperature and improve the low-temperature crack resistance ability of asphalt mixture.

2014 ◽  
Vol 587-589 ◽  
pp. 1332-1336
Author(s):  
Jun Qing Chen ◽  
Ai Jun Li ◽  
Mei Qian Jin ◽  
Min Nan Zheng ◽  
Wan Yi Yang

Prone to low temperature cracking of asphalt pavement problems in cold areas, testing BBR on 70# base asphalt and 4 kinds of different dosage of SBS modified asphalt, testing TSRST on their mixture to appraisal the low temperature performance of SBS modified asphalt mixture. Results show that compared with the temperature stress of internal cracks of base asphalt and SBS modified asphalt mixture not rise significantly. But the stress of SBS asphalt mixture growing slow and the temperature of cracking reduce obviously; it means the low temperature performance improved. This shows that SBS improves the toughness and reduced the modulus of asphalt mixture in low temperature, rather than increasing the tensile strength of mixture specimens.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2036
Author(s):  
Dongzhao Jin ◽  
Dongdong Ge ◽  
Siyu Chen ◽  
Tiankai Che ◽  
Hongfu Liu ◽  
...  

Cold in-place recycling (CIR) asphalt mixtures are an attractive eco-friendly method for rehabilitating asphalt pavement. However, the on-site CIR asphalt mixture generally has a high air void because of the moisture content during construction, and the moisture susceptibility is vital for estimating the road service life. Therefore, the main purpose of this research is to characterize the effect of moisture on the high-temperature and low-temperature performance of a CIR asphalt mixture to predict CIR pavement distress based on a mechanistic–empirical (M-E) pavement design. Moisture conditioning was simulated by the moisture-induced stress tester (MIST). The moisture susceptibility performance of the CIR asphalt mixture (pre-mist and post-mist) was estimated by a dynamic modulus test and a disk-shaped compact tension (DCT) test. In addition, the standard solvent extraction test was used to obtain the reclaimed asphalt pavement (RAP) and CIR asphalt. Asphalt binder performance, including higher temperature and medium temperature performance, was evaluated by dynamic shear rheometer (DSR) equipment and low-temperature properties were estimated by the asphalt binder cracking device (ABCD). Then the predicted pavement distresses were estimated based on the pavement M-E design method. The experimental results revealed that (1) DCT and dynamic modulus tests are sensitive to moisture conditioning. The dynamic modulus decreased by 13% to 43% at various temperatures and frequencies, and the low-temperature cracking energy decreased by 20%. (2) RAP asphalt incorporated with asphalt emulsion decreased the high-temperature rutting resistance but improved the low-temperature anti-cracking and the fatigue life. The M-E design results showed that the RAP incorporated with asphalt emulsion reduced the international roughness index (IRI) and AC bottom-up fatigue predictions, while increasing the total rutting and AC rutting predictions. The moisture damage in the CIR pavement layer also did not significantly affect the predicted distress with low traffic volume. In summary, the implementation of CIR technology in the project improved low-temperature cracking and fatigue performance in the asphalt pavement. Meanwhile, the moisture damage of the CIR asphalt mixture accelerated high-temperature rutting and low-temperature cracking, but it may be acceptable when used for low-volume roads.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2003
Author(s):  
Wei Xu ◽  
Jintao Wei ◽  
Zhengxiong Chen ◽  
Feng Wang ◽  
Jian Zhao

The type and fineness of a filler significantly affect the performance of an asphalt mixture. There is a lack of specific research on the effects of filler fineness and dust from aggregates on the properties of epoxy asphalt (EA) mixtures. The effects of aggregate dust and mineral powder on the properties of an EA mixture were evaluated. These filler were tested to determine their fineness, specific surface area and mineral composition. The effects of these fillers on the EA mastic sample and mixture were evaluated. The morphology of the EA mastic samples was analyzed using scanning electron microscopy (SEM). The effects of the fillers on the Marshall stability, tensile strength and fatigue performance of the EA mixture were evaluated. The dust from the aggregates exhibited an even particle size distribution, and its average particle size was approximately 20% of that of the mineral powder. The SEM microanalysis showed that the EA mastic sample containing relatively fine dust formed a tight and dense interfacial bonding structure with the aggregate. The EA mixture sample containing filler composed of dust from aggregate had a significantly higher strength and longer fatigue life than that of the EA sample containing filler composed of mineral powder.


Author(s):  
Naga Shashidhar ◽  
Pedro Romero

The workability and performance of bituminous mixes is known to be affected by the filler-asphalt mixture (or mastic) properties. The addition of fillers is known to stiffen asphalt. The degree of stiffening is a function of several filler and asphalt properties, which are not well understood. A fundamental approach to understanding the influence of such factors on the stiffening potential of filler in asphalt is discussed. This complex problem is simplified by introducing two intermediate measurable parameters, the maximum packing fraction, ϕ m, and the generalized Einstein coefficient, KE. This enables a better understanding of the influence of various factors such as average particle size, gradation, particle shape, presence of agglomerates, degree of dispersion, and the asphalt-filler interface on the stiffening potential of asphalt. First, the relationship between these two parameters and stiffening is thoroughly examined. The physical meaning of these parameters is discussed. Second, the influence of each factor on stiffening potential is addressed individually, supported by experimental data and relevent literature to derive a quantitative relationship. Finally, the relative advantages of the approach over the traditional treatment are discussed. It is further shown that, since the parameters φm and KE take into account the properties of an asphalt-filler system as a whole, they are likely to predict stiffening more accurately than Rigden’s fractional voids approach which is based on the properties of fillers alone.


2011 ◽  
Vol 243-249 ◽  
pp. 4178-4181 ◽  
Author(s):  
Shao Wen Du ◽  
Shan Shan Li

Two kinds of warm additives, Sasobit and Evotherm DAT, were used to develop warm stone mastic asphalt (SMA) mixture. The test results showed that compaction temperature of SMA can be decreased by 30-40°C when using Sasobit or Evotherm DAT. Then, to compare the mechanical performance properties of SMA and warm SMAs, mechanical properties of pavement mixture, including Marshall stability, retained Marshall stability, tensile strength ratio, Cantabro loss, rutting dynamic stability and low temperature flexural strength, were tested in laboratory. The results indicated that Sasobit can decrease obviously the moisture resistance ability and low temperature cracking resistance ability of SMA. Therefore, the pavement performance properties of Sasobit warm SMA are inferior to those of Evotherm DAT warm SMA, which has the nearly same performance properties as hot SMA.


2010 ◽  
Vol 168-170 ◽  
pp. 1145-1148 ◽  
Author(s):  
Xin Qiu ◽  
Lan Yun Chen ◽  
Liang Xue

The paper investigates the effects of different concentrations of crumb rubber (CR) on the pavement performance of the conventional penetration-grade 80/100 bitumen and the dense-graded wearing course asphalt mixture (AC16). A wet process and 0.6mm size CR were used and the control variables included three types of CR of concentrations 5%,10% and 15% by total weight of binder. The evaluations were twofold. Firstly, a comparison of the basic and rheological properties of those modified and unmodified binders was conducted. Secondly, a comparison of the resistance to moisture damage, low temperature cracking and permanent deformation of the AC16 and CR modified AC16 was performed. The results show that all the CR modified binders and mixtures are found to have improved performance as evaluated by a series of laboratory tests. In addition, among three CR concentrations, AC16 modified with 10%CR by total weight of binder exhibits the most satisfactory performance properties with respect to the resistance to moisture damage, permanent deformation and low temperature cracking.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2014 ◽  
Vol 599 ◽  
pp. 110-114 ◽  
Author(s):  
Yan Hua Wang ◽  
Kuang Yi Liu ◽  
Hai Xia Zhang ◽  
Shan Li

Anti-rut agent, named RPS-3000,was added into AC-25 asphalt mixture and its effects on high temperature stability, low temperature cracking resistance, water damage resistance and fatigue life were investigated in this paper. Results showed that the high temperature stability and low temperature crack resistance of the asphalt mixture improved significantly, the water damage stability increase slightly due to the introduction of anti-rut agents. Besides, the result of fatigue life test presented that excess amount of anti-rut agent may lead a deterioration of fatigue life. Keywords: Anti-rut agent; High temperature stability; Asphalt mixture


2012 ◽  
Vol 557-559 ◽  
pp. 329-333
Author(s):  
Zhong Run Zheng ◽  
Chao Zhao ◽  
Yi Feng Zhao ◽  
Pei Song

This paper introduces an asphalt mixture that mixed with different admixtures, rutting resistance agent and lignin fiber, at the same time. Rutting test and freeze-thaw splitting test are used to analyze rutting resistance on the high temperature and low temperature cracking of the asphalt mixture. The experiments with different mixes material composition are conducted to analysis various properties of the two admixtures on the mixture, especially the high temperature stability, low temperature crack resistance and the law of improvement effect. In addition, the experiments also determine the optimal asphalt content of different type of mixtures. The results showed that the single-doped KTL rutting resistance or lignin fibers have some improvement in water temperature performance of asphalt mixture, stability improvement of double-doped admixture asphalt mixture is better than the single-doped asphalt mixture, such as KTL rutting resistance agents and lignin fibers


Sign in / Sign up

Export Citation Format

Share Document