Outdoor Personnel Positioning System Based on GPS

2013 ◽  
Vol 385-386 ◽  
pp. 1537-1540
Author(s):  
Hai Peng Pan ◽  
Le Wang ◽  
Dong Dong Chen

With the comparison of wireless positioning technology such as Wi-Fi, ZigBee, GPS, this paper presents an outdoor personnel positioning system based on GPS. It is composed of electronic wristbands (used for detainees), handsets (used for supervisors) and monitoring software of the host computer. In order to improve the positioning accuracy and reduce power consumption of the system, high-precision GPS chips and low power microcontroller chips are applied. Handsets can exchange data with electronic wristbands through self-prepared communication protocol. It also can work out the distance through a precise latitude and longitude distance algorithm. Finally, the monitoring software will reproduce personnel routes in Google Earth. The system can achieve the positioning of fixed groups and moving groups, which is suitable for the detention center to supervise, escort or chase detainees.

Author(s):  
Hongchao Wang ◽  
Lei Wang ◽  
Hanlin Liu

DP assisted mooring system is a new positioning system including mooring system and dynamic positioning system. In this paper, two measures are proposed to reduce the offset and the power consumption of a generic semi-submersible platform which is equipped with a DP assisted mooring system during operation. One is to tighten the windward mooring lines and slacken the leeward mooring lines, the other is to reduce or cancel the forbidden angles of the thrusters adjacent to the failed thrusters. Given that the two measures can both reduce the offset and the power consumption of the semi-submersible unit, it is suggested to combine the two measures together to obtain better positioning accuracy. This paper is helpful to engineering practice.


2013 ◽  
Vol 437 ◽  
pp. 870-875 ◽  
Author(s):  
Zhong Liang Deng ◽  
Fei Peng Xie ◽  
Yan Pei Yu ◽  
Xiao Hong Zhao ◽  
Zhuang Yuan

In order to solve the discontinuity of navigation and positioning in indoor signal coverage blind areas, and false region judgment caused by positioning error, an integrated method combining Wireless Positioning System (WPS), Pedestrian Dead Reckoning (PDR) and Map Matching (MM) is presented in this paper. By using the combination of Kalman filtered WPS and PDR information, inertial information and geographic information, pedestrian position could be evaluated. Through experiment, this method effectively increased positioning accuracy of the system as well as greatly improved the user experience.


2014 ◽  
Vol 644-650 ◽  
pp. 2788-2792
Author(s):  
Zheng Zhang ◽  
Xing Peng Tao ◽  
Lun Zeng ◽  
Chan Wang

At present, in many large supermarkets, the trolley management mainly rely on manual, which increases management costs and the burden of work, therefore, the supermarket trolley positioning system is proposed to solve this problem. The positioning system takes full advantage of ZigBee technology’s low power consumption, low cost and ad hoc network, the node module is embedded into the supermarket trolley and positioned by positioning engine, using PC interface developed by VB6.0 to display its real-time position. Field experiments show that its positioning accuracy is less than 3m, The staffs easily know the location of trolleys when they sit in the monitor room. It can reduce the costs and the burden of work.


2015 ◽  
Vol 809-810 ◽  
pp. 682-687
Author(s):  
Vasile Nasui ◽  
Mihai Banica ◽  
Dinu Darabă

This paper presents the dynamic characteristics and the proposed positioning performance of the system to them investigated experimentally. In this research, we developed the positioning system and we evaluated positioning accuracy. The developed system uses a servo motor for motion actuation. In this paper, we focused on studying the dependency of the positioning error – elementary errors – the position of the conducting element for the mechanism of the transformation of the rotation translation movement, representatively the mechanism screw – screwdriver and on emphasizing the practical consequences in the field of design, regulation and exploitation of the correct identification of all the initial errors in the structure of the mechanism, their character and the selection for an ultimate calculus of these which are of a real practical importance.


2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 143
Author(s):  
Qinghua Luo ◽  
Xiaozhen Yan ◽  
Chunyu Ju ◽  
Yunsai Chen ◽  
Zhenhua Luo

The ultra-short baseline underwater positioning is one of the most widely applied methods in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy. However, there exists environmental noise, which has negative impacts on the positioning accuracy during the ultra-short baseline (USBL) positioning process, which results in a large positioning error. The positioning result may lead to wrong decision-making in the latter processing. So, it is necessary to consider the error sources, and take effective measurements to minimize the negative impact of the noise. In our work, we propose a USBL positioning system with Kalman filtering to improve the positioning accuracy. In this system, we first explore a new kind of element array to accurately capture the acoustic signals from the object. We then organically combine the Kalman filters with the array elements to filter the acoustic signals, using the minimum mean-square error rule to obtain accurate acoustic signals. We got the high-precision phase difference information based on the non-equidistant quaternary original array and the phase difference acquisition mechanism. Finally, on account of the obtained accurate phase difference information and position calculation, we determined the coordinates of the underwater target. Comprehensive evaluation results demonstrate that our proposed USBL positioning method based on the Kalman filter algorithm can effectively enhance the positioning accuracy.


Author(s):  
Jacob Beck ◽  
Burak Sencer ◽  
Ravi Balasubramanian ◽  
Jordan Meader

This paper presents on the design, prototyping and testing of a flexure-based active workpiece fixture system for precision robotic deburring. Current industrial robotic manipulators suffer from poor positioning accuracy, which makes precision tasks such as deburring, polishing and grinding challenging. Together, the robotic manipulator and the proposed active work fixture will create a dual-stage positioning system for precision tasks where position/force control is crucial. The main application is robotic deburring, which demands positioning accuracy and high compliance over large cutting forces. This first prototype active fixture system is designed as a planar motion table that is supported by parallel flexures, driven by voice-coil actuators, and uses high-resolution laser displacement pickups facilitate accurate motion generation with great backdrivability for force control. The theory behind the proposed design is shown, and a prototype is then used to validate performance. Overall the prototype flexure stage achieves a total stroke of 1 mm and a bandwidth of 21 Hz.


Author(s):  
Vinayak J. Kalas ◽  
Alain Vissière ◽  
Thierry Roux ◽  
Olivier Company ◽  
Sébastien Krut ◽  
...  

Structural compliance of hexapods limits their positioning accuracy. Taking a step towards solving this problem, this paper proposes a new efficient method to evaluate the stiffness of hexapods in order to predict and correct their positioning error due to compliance. The proposed method can be used to predict the six degree of freedom deflection of the platform under load. This method uses a simple lumped stiffness parameter model whose parameters can be estimated using the identification technique presented in this paper. An experimental study with micrometer level measurements performed on a hexapod based micro-positioning system is used to assess the efficiency of the presented method.


Author(s):  
Weidong Wang ◽  
Chengjin Du ◽  
Zhijiang Du

Purpose This paper aims to present a prototype of medical transportation robot whose positioning accuracy can reach millimeter-level in terms of patient transportation. By using this kind of mobile robot, a fully automatic image diagnosis process among independent CT/PET devices and the image fusion can be achieved. Design/methodology/approach Following a short introduction, a large-load 4WD-4WS (four-wheel driving and four-wheel steering) mobile robot for carrying patient among multiple medical imaging equipments is developed. At the same time, a specially designed bedplate with self-locking function is also introduced. For further improving the positioning accuracy, the authors proposed a calibration method based on Gaussian process regression (GPR) to process the measuring data of the sensors. The performance of this robot is verified by the calibration experiment and Image fusion experiment. Finally, concluding comments are drawn. Findings By calibrating the robot’s positioning system through the proposed GPR method, one can obtain the accuracy of the robot’s offset distance and deflection angle, which are 0.50 mm and +0.21°, respectively. Independent repeated trials were then set up to verify this result. Subsequent phantom experiment shows the accuracy of image fusion can be accurate within 0.57 mm in the front-rear direction and 0.83 in the left-right direction, respectively, while the clinical experiment shows that the proposed robot can practically realize the transportation of patient and image fusion between multiple imaging diagnosis devices. Practical implications The proposed robot offers an economical image fusion solution for medical institutions whose imaging diagnosis system basically comprises independent MRI, CT and PET devices. Also, a fully automatic diagnosis process can be achieved so that the patient’s suffering of getting in and out of the bed and the doctor’s radiation dose can be obviated. Social implications The general bedplate presented in Section 2 that can be mounted on the CT and PET devices and the self-locking mechanism has realized the catching and releasing motion of the patient on different medical devices. They also provide a detailed method regarding patient handling and orientation maintenance, which was hardly mentioned in previous research. By establishing the positioning system between the robot and different medical equipment, a fully automatic diagnosis process can be achieved so that the patient’s suffering of getting in and out of the bed and the doctor’s radiation dose can be obviated. Originality/value The GPR-based method proposed in this paper offers a novel method for enhancing the positioning accuracy of the industrial AGV while the transportation robot proposed in this paper also offers a solution for modern imaging fusion diagnosis, which are basically predicated on the conjoint analysis between different kinds of medical devices.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Haixia Wang ◽  
Junliang Li ◽  
Wei Cui ◽  
Xiao Lu ◽  
Zhiguo Zhang ◽  
...  

Mobile Robot Indoor Positioning System has wide application in the industry and home automation field. Unfortunately, existing mobile robot indoor positioning methods often suffer from poor positioning accuracy, system instability, and need for extra installation efforts. In this paper, we propose a novel positioning system which applies the centralized positioning method into the mobile robot, in which real-time positioning is achieved via interactions between ARM and computer. We apply the Kernel extreme learning machine (K-ELM) algorithm as our positioning algorithm after comparing four different algorithms in simulation experiments. Real-world indoor localization experiments are conducted, and the results demonstrate that the proposed system can not only improve positioning accuracy but also greatly reduce the installation efforts since our system solely relies on Wi-Fi devices.


Sign in / Sign up

Export Citation Format

Share Document