Low-Power WSN Measurement Node for Greenhouse

2013 ◽  
Vol 391 ◽  
pp. 501-504
Author(s):  
De Hai Chen ◽  
Wei Feng Chao

The component of the greenhouse wireless sensor network was introduced, as the same time, its working process was presented. The wireless measurement nodes were designed based on nRF9E5. The hardware and software of the actuator nodes were studied, and according to the wireless communication system characteristic designing the system of hardware and software. The system was also debugged and test run. To reduce energy consumption, low-power components and low-power wireless transmission model were utilized, and the node had two operating model: active model and standby model. The wireless measurement system is reliable and expansibility.

2011 ◽  
Vol 148-149 ◽  
pp. 973-976
Author(s):  
Chun Yan Wang

This paper focus on how to improve wireless transmission efficiency, reduce the quality and volume of TPMS to reduce impact of tire balance in a moving vehicle. A tire pressure monitoring transmitter based on high integrated wireless sensor MPXY8300 is described in this paper and the hardware structure is being put forward. Introduced the way to reduce energy consumption, and wireless circuit design. This system can monitor the inner practical pressure and temperature of each tire and the security accidents can be avoided effectively.


2011 ◽  
Vol 403-408 ◽  
pp. 1397-1400
Author(s):  
Ping Wang ◽  
Shi Wu Xu

Time synchronization is important for many applications in Wireless Sensor Networks, how to improve synchronization precision and reduce energy consumption are the two important aspects in Wireless Sensor Networks. In this paper, first, we introduce the TPSN and DMTS algorithms, after analyzing the advantages and disadvantages of both. Make use of two algorithms have been integrated. We proposed a DMSN time synchronization algorithm. Experiments show that ,comparing with the TPSN algorithm, DMSN algorithm has lower complexity and energy consumption.It can be easily applied in Wireless Sensor Networks.


Author(s):  
Khalil Al-shqeerat

<p class="Abstract">In Wireless Sensor Networks, no physical backbone infrastructure used while all sensor nodes are energy constrained and impractical to recharge. The behavior of networks becomes unstable once the first node dies. The key challenge in such networks is how to reduce energy consumption to increase the network lifetime, especially with the different amount of energy in heterogeneity environments.</p><p class="Abstract">In this paper, the virtual backbone routing solution is suggested to reduce energy consumption in a wireless sensor network. An integrated approach combines both advantages of hierarchical cluster-based architecture and shortest spanning tree topology for constructing a virtual backbone with a mobile sink. The clustering solution is used to divide the network into clusters and reduces the number of nodes included in the communication. On the other hand, the shortest spanning tree technique is used to construct a backbone among all cluster heads and mobile sink every time the sink traverses to a new location. The proposed approach aims to construct an efficient data aggregation spanning tree used to send or receive data between the mobile sink and elected cluster heads in wireless sensor networks. It constructs an efficient virtual backbone to decrease the energy consumption and prolong the lifetime of the network.</p>Performance evaluation results demonstrate how the proposed approach prolongs the lifetime of wireless sensor networks compared to some conventional clustering protocols.


2013 ◽  
Vol 756-759 ◽  
pp. 1126-1130
Author(s):  
Jiang Hong Guo ◽  
De Li Chen

Data aggregation is an important method to reduce energy consumption in wireless sensor networks (WSN). Auth-ors proposed a cluster trisecting based data aggregation scheme for wireless sensor networks in which the cluster was trisected and some reporters were assigned to each region. The nodes have same reading and located in same region with reporter will keep silent in data aggregating, thus reducing the inner-cluster transmissions. Analysis and simulation show that the transmissions of inner-cluster aggregation in our scheme lower than that of related schemes and the decrease of trans-missions is obvious when redundancy of sensor readings is high.


2012 ◽  
Vol 229-231 ◽  
pp. 1261-1264
Author(s):  
Li Peng Lu ◽  
Ming Yue Zhai ◽  
Ying Liu ◽  
Xiao Da Sun

Wireless Sensor Networks (WSNs) has been widely recognized as a promising technology in smart grid. However, sensor nodes have limited battery energy. So, we present a mathematical model which is to reduce energy consumption and prolong the lifetime of WSNs. Because of the high density of sensor nodes deployment, a sleep mechanism is proposed to make all sensor nodes work by turns while all service requests can be satisfied. And then, an Improved Sleep Mechanism is put forward to remove redundant active nodes. The simulation result indicates that energy consumption adopting the ISNSS is lower than or equal to the energy consumption adopting SNSS. The SNSS and ISNSS all can save some energy of WSNs to some extent and when the redundant active nodes are removed, the network energy consumption is further reduced based on the SNSS.


2013 ◽  
Vol 705 ◽  
pp. 352-358
Author(s):  
Chun Xiao Fan ◽  
Ran Li ◽  
Jun Wei Zou ◽  
Ye Qiao Wang

This paper introduces an application of wireless sensor network based on the ZigBee -- the Smart-Scene system. In-depth analysis of factors of invalid power consumption, a functional separated sink node is designed and a DPM (Dynamic Power Management) schema of dynamic node based on event-driven is proposed. The schema is used in Smart-Scene system and the experimental results indicate it is high feasibility and reduce energy consumption. This method will become an effective solution for wireless sensor network.


2018 ◽  
Vol 10 (1) ◽  
pp. 185-200
Author(s):  
Mohammad Sedighimanesh ◽  
Ali Sedighimanesh

Purpose – Clustering, routing, and data dissemination are an important issue in wireless sensor networks. The basic functions of wireless sensor networks are phenomena controlling in the physical environment, and the reporting of sensed data to the central node called sink, in which more operations can be done on the data. The most important limitation of wireless sensor networks is energy consumption. There are several ways to increase the lifetime of these networks, that one of the most important is the using proper clustering method. The aim of this study is to reduce energy consumption using an effective clustering algorithm and for this purpose, the honeybee colony metaheuristic method was used for cluster heads selection. Methodology/approach/design – The simulation in this paper was done using MATLAB software and the proposed method is compared with the LEACH and SEED approach. Findings – The results of simulations in this research indicate that the research has significantly reduced the energy consumption in the network than LEACH and SEED algorithms. Originality/value – Given the energy constraints in the wireless sensor network, providing such solutions and using metaheuristic algorithms can dramatically reduce energy consumption and, consequently increase network lifetime.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Fatemehzahra Gholami Tirkolaei ◽  
Faramarz E. Seraji

<p>Wireless sensor network consists of hundred or thousand sensor nodes that are connected together and work simultaneously to perform some special tasks. The restricted energy of sensor nodes is the main challenge in wireless sensor network as node energy depletion causes node death. Therefore, some techniques should be exerted to reduce energy consumption in these networks. One of the techniques to reduce energy consumptions most effectively is the use of clustering in wireless sensor networks.</p><p>There are various methods for clustering process, among which LEACH is the most common and popular one. In this method, clusters are formed in a probabilistic manner. Among clustering strategies, applying evolutional algorithm and fuzzy logic simultaneously are rarely taken into account. The main attention of previous works was energy consumption and less attention was paid to delay.</p><p>In the present proposed method, clusters are constructed by an evolutional algorithm and a fuzzy system such that in addition to a reduction of energy consumption, considerable reduction of delay is also obtained. The simulation results clearly reveal the superiority of the proposed method over other reported approaches.</p>


Sign in / Sign up

Export Citation Format

Share Document