Study on Seismic Performance of Reinforced Concrete Multi-Span Cantilever Girder Bridge after Reinforcement

2013 ◽  
Vol 401-403 ◽  
pp. 728-733
Author(s):  
Xiu Fang Li ◽  
Rui Fu Wu

Basing on the reinforcement of a practical project, which is a reinforced concrete multi-span cantilever girder bridge, by changing section properties to improve the bearing capacity and seismic performance of the bridge. Then, a finite element model is established and solved by using the subspace iteration method, the frequency and vibration type is compared that of the bridge before and after reinforcement, the effectiveness of the new method on the structural dynamic characteristic is verified at the same time. Then, the seismic response of the bridge is calculated and analyzed by using the response spectrum method, which can provide method for reinforcement of similar bridge.

2012 ◽  
Vol 170-173 ◽  
pp. 3250-3254
Author(s):  
Sheng Lin Li ◽  
Tian Long Ling ◽  
Ying Wei Cui ◽  
Qian Qian Yan ◽  
Guo Fang Liu

To study the mechanical evolution rule of the supporting part in the process of the reinforced concrete chimney blasting demolition, a finite element model based on a practical project is established by explicit analysis software LS-DYNA. By means of four different Angle blasting cut finite element models, the stress distribution of the supporting part and neutral axis moving rule is drawn. It will help to develop the theory of the reinforced concrete chimneys blasting demolition.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yang Cao ◽  
Yan Liang ◽  
Chenzi Huai ◽  
Ji Yang ◽  
Ruimin Mao

The bond-slip effect has a great influence on the seismic performance of reinforced concrete structures and ignoring it will overestimate the seismic performance of the structures. Based on the low-cyclic reversed loading experiment of a reinforced concrete column, this paper uses OpenSees to establish a nonlinear finite element model considering bond-slip and verify its correctness. In this paper, a multispan continuous girder bridge with varying pier heights is taken as an example. Considering the effect of the bond-slip behavior of steel bars, a refined finite element model based on the OpenSees platform is established to do the numerical simulation analysis. 10 seismic waves are selected from the Pacific Earthquake Engineering Research Center (PEER) according to the site condition and modulate the amplitude to 150 waves. This paper uses the incremental dynamic analysis (IDA) and the second-order reliability method to analyze the seismic fragility of bridge components and systems, respectively. Results show that the exceeding probability increases obviously when considering bond-slip, and with the increase of seismic spectral acceleration, the influence of bond-slip on the exceeding probability of components also increases; when bond-slip is considered, the difference of system fragility between the upper and lower limits under four damage states is greater than that without bond-slip.


2002 ◽  
Vol 5 (4) ◽  
pp. 231-239
Author(s):  
Yongda Fu ◽  
John T. DeWolf

A study to monitor a multi-span reinforced concrete bridge was recently completed. The bridge is curved, with a non-prismatic three-cell box cross section. Extensive field testing was performed to evaluate the causes and effects of large shear cracks. Evaluation of the test results has shown that the distribution of strains in the bridge is significantly different from those assumed in design. This paper reports on the use of finite element analysis to assist in the evaluation of the behavior. Of prime interest has been the identification of the sources of the discrepancy between the test data and the design. This work shows that it is necessary to include concrete softening due to both shear and flexural cracking. The finite element model has also been used to demonstrate that the cracks were primarily the result of temperature differentials arising from the position of the sun during the normal daily cycle.


2014 ◽  
Vol 501-504 ◽  
pp. 1112-1116
Author(s):  
Qiao Wang ◽  
Shui Wan ◽  
Pei Feng Li

Based on a long-span PC composite box-girder bridge with corrugated steel webs, the dynamic characteristics and seismic behavior of finite element model built by Midas Civil is analyzed through response spectrum method. The results show that the first natural frequency is vibration of inner surface mainly for the main span and it meets the demand of two-stage seismic design.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Daihai Chen ◽  
Yinxin Li ◽  
Zheng Li ◽  
Yilin Fang ◽  
Laijing Ma ◽  
...  

Taking a 62 m CFST bridge with a curved-string truss as the research object, according to its reinforcement scheme, the spatial finite element models of the bridge before and after reinforcement were established by using the general finite element software ANSYS. The natural frequencies of the bridge before and after reinforcement were calculated, and the seismic performance of the bridge was analyzed by using the response spectrum method. The results show that the frequencies of the reinforced bridges increase in varying degrees, especially the vertical and torsional frequencies. Before and after reinforcement, the maximum axial force in the upper chord of the bridge is the largest, and the shear force and bending moment are small. The maximum internal force appears at the two ends of the upper chord. This position should be regarded as the weak link of the bridge seismic resistance. Under the same conditions, the axial force of the bridge after reinforcement is reduced by about 30% compared with that before reinforcement, and the displacement of the bridge after reinforcement is reduced in varying degrees. The reinforcement measures can improve the lateral and vertical stiffness of the bridge, especially the stiffness of the deck system.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.


2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


Sign in / Sign up

Export Citation Format

Share Document