A Linear Stator Permanent Magnet Vernier Machine Using Variable Halbach Arrays

2013 ◽  
Vol 416-417 ◽  
pp. 305-310 ◽  
Author(s):  
Yi Du ◽  
K.T. Chau ◽  
Ming Cheng

This paper proposes a linear stator perment magnet (PM) vernier machine using variable Halbach Arrays (LSPMV-VHA machine) which offers a number of outstanding merits, such as the high thrust force and low cogging force. The key is to newly employ variable Halbach PM array to substitute the parallel PMs in the linear stator PM vernier (LSPMV) machine. By using the finite element method, the dimensions and the magnetization directions of the PM segments are optimized for the aim of the highest power density. In order to confirm the advantages, a quantitative comparison between the proposed machine and the LSPMV machine is performed in the conditions of the same PM volume, electric loading and rated speed. The results show that the proposed machine has higher power density and lower cogging force than its counterparts.

2011 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ivan Yatchev ◽  
Krastio Hinov ◽  
Iosko Balabozov ◽  
Kristina Krasteva

Several constructions of electromagnetic actuators with moving permanent magnet for Braille screen are studied. All they are formed from a basic one that consists of two coils, core and moving permanent magnet. The finite element method is used for modeling of the magnetic field and for obtaining the electromagnetic force acting on the mover. The static force-stroke characteristics are obtained for four different constructions of the actuator. The constructions with ferromagnetic disc between the coils ensure greater force than the ones without disc and can reach the required minimum force.


2021 ◽  
Vol 12 (4) ◽  
pp. 177
Author(s):  
Yixian Wang ◽  
Hui Yang ◽  
Hao Zheng ◽  
Heyun Lin ◽  
Shukang Lyu

This paper presents a comparative analysis of two parallel hybrid magnet memory machines (PHMMMs) with different permanent magnet (PM) arrangements. The proposed machines are both geometrically characterized by a parallel U-shaped hybrid PM configuration and several q-axis magnetic barriers. The configurations and operating principles of the investigated machines are introduced firstly. The effect of magnet arrangements on the performance of the proposed machines is then evaluated with a simplified magnetic circuit model. Furthermore, the electromagnetic characteristics of the proposed machines are investigated and compared by the finite-element method (FEM). The experiments on one prototype are carried out to validate the FEM results.


2012 ◽  
Vol 61 (4) ◽  
pp. 471-482 ◽  
Author(s):  
Andrzej Waindok

Abstract The calculation results of the static field parameters for permanent magnet linear synchronous motor have been presented in this work. The influence of the construction temperature on the parameters has been analyzed mathematically. Models for magnetic and temperature fields determination have been formulated. Two kinds of permanent magnets (NdFeB and SmCo) have been considered. The distribution of the thermal field has been obtained using the finite element method (FEM).


Author(s):  
Lufeng Zhang ◽  
Kai Wang

Purpose The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd) shaping mover in comparison with the PMLSM with sine (SIN) shaping mover and conventional shaping mover. Design/methodology/approach The optimal amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping permanent magnet (PM) for maximizing the thrust force is analytically derived and confirmed by finite element method (FEM). Furthermore, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are optimized. It is found that the optimal amplitude of the injected third harmonic is one-sixth of the fundamental one, the optimal PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are 0, 0.85 and 0.5 mm, respectively. In addition, the electromagnetic performances are analyzed and quantitatively compared for the PMLSM with SIN + 3rd shaping mover, SIN shaping mover and conventional shaping mover. Findings The average thrust force and efficiency of the PMLSM with SIN + 3rd shaping mover are improved significantly, while the thrust ripple is not increased, comparing to those of the PMLSM with SIN shaping mover. Meanwhile, the thrust ripple is lower than that of the conventional shaping mover. Research limitations/implications The purely sinusoidal currents are applied in this analysis and the influences of harmonics in the current on electromagnetic performances are not considered. Originality/value This paper presents a PMLSM with SIN + 3rd shaping mover to improve the thrust force and efficiency without increasing the thrust ripple, considering the effects of the amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping PM, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio.


2017 ◽  
Vol 11 (3) ◽  
pp. 194-198 ◽  
Author(s):  
Andrzej Waindok ◽  
Bronisław Tomczuk

Abstract The reluctance network model of a permanent magnet tubular motor (PMTM) has been presented in the paper. The reluctance values of the magnetic circuit have been calculated with using analytical expressions. The air gap reluctance has been determined with using both analytical expressions and the finite element method (FEM). Using the calculation model, the flux values coupled with the windings have been obtained and used in the calculations of force value. The calculated results have been compared with numerical and measured ones.


2013 ◽  
Vol 416-417 ◽  
pp. 264-269
Author(s):  
Pei Long Wang ◽  
Xiao Zhuo Xu ◽  
Bao Yu Du ◽  
Hai Chao Feng ◽  
Xu Dong Wang ◽  
...  

In this paper, two novel topological structures of sliding transformer with ferromagnetic core applied in the Contactless Electrical Power Transmission (CEPT) system used for the ropeless elevator driven by moving-coil type Permanent Magnet Synchronous Linear Motor (PMLSM) have been proposed, and the magnetic field distribution is calculated and analyzed by the finite element method (FEM). According to the analysis results of the traditional E-E topology sliding transformer, much higher coupling coefficients of sliding transformers with proposed topologies have been obtained. Then, based on the magnetic distribution and the circuit model of system, the compensation capacitances have been calculated considering supply frequency and load conditions. Finally, the load characteristic of the system with compensation is also obtained by FEM.


2011 ◽  
Vol 403-408 ◽  
pp. 4050-4055
Author(s):  
Chang Chou Hwang ◽  
Ping Huey Tang ◽  
Chia Ming Chang

This paper aims to develop a small permanent magnet (PM) synchronous generator for direct-coupled, low-speed wind turbine applications. The generator, rated 3-phase 110 V and 1 kW is designed as an outer rotor structure. The design and optimization of the generator is done with the aid of the electromagnetic field analysis based on the finite element method.


Sign in / Sign up

Export Citation Format

Share Document