Design of IIR Digital Filter Based on FPGA

2013 ◽  
Vol 427-429 ◽  
pp. 1968-1971
Author(s):  
Hui Zhang ◽  
Kun Yang ◽  
Si Ming He ◽  
Jun Li

From the request of practical applications,according to the basic theory of IIR filters, a scheme of hardware implementation is worked out combining with the fact that coefficients of numerator and denominator of transfer function are fixed and the structural feature of selected FPGA. From the clew of implementing stratified ,modularized and parameterized design ,the thesis describes the hardware implementation of the IIR filter with VHDL and schematic diagram design method.

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yasunori Sugita

This paper presents a design method of Chebyshev-type and inverse-Chebyshev-type infinite impulse response (IIR) filters with an approximately linear phase response. In the design of Chebyshev-type filters, the flatness condition in the stopband is preincorporated into a transfer function, and an equiripple characteristic in the passband is achieved by iteratively solving the QP problem using the transfer function. In the design of inverse-Chebyshev-type filters, the flatness condition in the passband is added to the constraint of the QP problem as the linear matrix equality, and an equiripple characteristic in the stopband is realized by iteratively solving the QP problem. To guarantee the stability of the obtained filters, we apply the extended positive realness to the QP problem. As a result, the proposed method can design the filters with more high precision than the conventional methods. The effectiveness of the proposed design method is illustrated with some examples.


2018 ◽  
Vol 7 (1.9) ◽  
pp. 69 ◽  
Author(s):  
G Parameshappa ◽  
D Jayadevapp

This paper attempts to present an uniform digital filter bank based on linear phase FIR and IIR filters applied for Frequency Response Masking (FRM) technique in hearing aid applications.In the proposed filter bank, nine uniformly spaced sub-bands are formed with the help of half band filters and masking filters. These nine channel FIR filter bank is realized using an interpolated half band linear phase FIR filter and an appropriate number of masking FIR filters. The nine channel IIR filter bank is realized using an interpolated half band approximately linear phase IIR filter and an appropriate number of masking filters. The proposed approximately linear phase IIR half band filter bank is compared with filter bank based on linear phase FIR half band filters in terms of area, power, memory and number of gates needed for implementation. The experiment was carried on various hearing loss cases and the results obtained from these tests proves that, the proposed filter bank achieved the required matching between audiograms and magnitude response of the filter bank at very reasonable range with less computational complexity.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Radu Matei

This paper proposes an analytical design method for two-dimensional square-shaped IIR filters. The designed 2D filters are adjustable since their bandwidth and orientation are specified by parameters appearing explicitly in the filter matrices. The design relies on a zero-phase low-pass 1D prototype filter. To this filter a frequency transformation is next applied, which yields a 2D filter with the desired square shape in the frequency plane. The proposed method combines the analytical approach with numerical approximations. Since the prototype transfer function is factorized into partial functions, the 2D filter also will be described by a factorized transfer function, which is an advantage in implementation.


Author(s):  
Ljiljana Milic

Infinite impulse response (IIR) filters are used in applications where the computational efficiency is the highest priority. It is well known that an IIR filter transfer function is of a considerably lower order than the transfer function of an FIR equivalent. The drawbacks of an IIR filter are the nonlinear phase characteristic and sensitivity to quantization errors. In multirate applications, the computational requirements for FIR filters can be reduced by the sampling rate conversion factor as demonstrated in Chapter IV. However, such a degree of computation savings cannot be achieved in multirate implementations of IIR filters. This is due to the fact that every sample value computed in the recursive loop is needed for evaluating an output sample. Based on the polyphase decomposition, several techniques have been developed which improve the efficiency of IIR decimators and interpolators as will be shown later on in this chapter. In this chapter, we consider first the direct implementation structures for IIR decimators and interpolators. In the sequel, we demonstrate the computational requirements for direct form IIR decimators and interpolators. The polyphase decomposition of an IIR transfer function is explained with its application to decimation and interpolation. Then, we demonstrate an efficient IIR polyphase structure based on all-pass subfilters, which is applicable to a restricted class of decimators and interpolators. In this chapter, we discuss the application of the elliptic minimal Q factor (EMQF) filter transfer function in constructing high-performance decimators and interpolators. The chapter concludes with a selection of MATLAB exercises for the individual study.


2012 ◽  
Vol 433-440 ◽  
pp. 4571-4577
Author(s):  
Guo Sheng Xu

To realize filtering of high-speed input data, and aiming at the design method of systolic FIR digital filter, this paper proposes a design method of high-speed FIR filter based on FPGA. The states conversion between coefficients configuring mode and filtering mode is finished by FSM (Finite State Machine), which ensures the system to work orderly. The experimental results demonstrated, it can reduce the input dimension and eliminate linear and nonlinear interference effectively. In addition, it is very suitable for hardware implementation due to its simple structure.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1449
Author(s):  
Wenfeng Wang ◽  
Shaochan Duan ◽  
Haoran Zhu

In order to improve the durability of the asphalt pavement on a cement concrete bridge, this study investigated the effect of the modulus of the asphalt mixture at the bottom layer on the mechanical response of bridge pavement, along with a type of emerging bridge pavement structure. In addition, the design method and pavement performance of a high-modulus asphalt mixture were investigated using laboratory and field tests, and the life expectancy of the deck pavement structure was predicted based on the rutting deformation. The results showed that the application of a high-modulus asphalt mixture as the bottom asphalt layer decreased the stress level of the pavement structure. The new high-modulus asphalt mixture displayed excellent comprehensive performance, i.e., the dynamic stability reached 9632 times/mm and the fatigue life reached 1.65 million cycles. Based on the rutting depth prediction, using high-modulus mixtures for the bridge pavement prolonged the service life from the original 5 years to 10 years, which significantly enhanced the durability of the pavement structure. These research results could be of potential interest for practical applications in the construction industry.


2018 ◽  
Vol 7 (4.12) ◽  
pp. 1
Author(s):  
Dr. Chhavi Saxena ◽  
Dr. Avinash Sharma ◽  
Dr. Rahul Srivastav ◽  
Dr. Hemant Kumar Gupta

Electrocardiogram (ECG) signal is the electrical recording of coronary heart activity. It is a common routine and vital cardiac diagnostic tool in which in electric signals are measured and recorded to recognize the practical status of heart, but ECG signal can be distorted with noise as, numerous artifacts corrupt the unique ECG signal and decreases it quality. Consequently, there may be a need to eliminate such artifacts from the authentic signal and enhance its quality for better interpretation. ECG signals are very low frequency signals of approximately 0.5Hz-100Hz and digital filters are used as efficient approach for noise removal of such low frequency signals. Noise may be any interference because of movement artifacts or due to power device that are present wherein ECG has been taken. Consequently, ECG signal processing has emerged as a common and effective tool for research and clinical practices. This paper gives the comparative evaluation of FIR and IIR filters and their performances from the ECG signal for proper understanding and display of the ECG signal.  


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1845 ◽  
Author(s):  
Chunling Zhong ◽  
Mo Liu ◽  
Yunlong Zhang ◽  
Jing Wang

This study investigated four factors (water/binder ratio, silica fume, fly ash, and sand/binder ratio) using the orthogonal experimental design method to prepare the mix proportions of a manufactured sand reactive powder concrete (RPC) matrix to determine the optimal matrix mix proportions. On this basis, we assessed the compressive and splitting tensile strengths of different steel fiber contents under natural, standard, and compound curing conditions to develop an economical and reasonable RPC for various engineering requirements. A calculation method for the RPC strength of the steel fiber contents was evaluated. The results showed that the optimum steel fiber content for manufactured sand RPC is 4% under natural, standard, and compound curing conditions. Compared with standard curing, compound curing can improve the early strength of manufactured sand RPC but only has a small effect on the enhancement of late strength. Although the strength of natural curing is slightly lower than that of standard curing, it basically meets project requirements and is beneficial for practical applications. The calculation formula of 28-day compressive and splitting tensile strengths of manufactured sand RPC steel fiber at 0%–4% is proposed to meet the different engineering requirements and the flexible selection of steel fiber content.


2002 ◽  
pp. 105-142 ◽  
Author(s):  
Ljiljana D. Milic ◽  
Miroslav D. Lutovac

Application of multirate techniques to improve digital filter design and implementation are considered in this chapter. FIR and IIR filter design and implementation for sampling rate conversion by integer and rational factors are presented. Sharp narrow-band and wide-band multirate design techniques are discussed. Accurate designs of FIR and IIR half-band filters are described in detail. Several examples are provided to illustrate the multirate approach to filter design.


Sign in / Sign up

Export Citation Format

Share Document