Preparation and Characteristics of the Micro/Nano Fibrils from the Wheat-Straw Treated by Enzyme

2013 ◽  
Vol 432 ◽  
pp. 20-24
Author(s):  
Cong Liu ◽  
Yang Zhang ◽  
Yong Su

Single-factor experiment was applied to get the optimum enzyme treatment condition: water bath in the oscillation trough at the frequency of 80 in 50°C with enzyme usage 35 IU/g for 48h. Transmission electron microscope (TEM), laser granularity distributing machine, Fourier transform infrared spectrometer (FTIR) and X-ray diffractor (XRD) were used to analyze the product with enzyme treatment. Observing by TEM, we could see large volume of micro/nanofibrils had gathered together, while fibre was 100-300 nm long and far less than 100nm radial, meeting the requirement of micro/nanofibrils. Being analyzed with laser granularity distributing machine, part of the product had reached the micro/nanolevel. Analyzing by FTIR, we can conclude that after enzyme treatment and ultrasonic dispersion cellulose had no change in functional groups. From the crystallinity atlas, we find the crystallinity of wheat-straw micro/nanofibrils improved from 65.55% to 72.99%, showing that cellulose enzyme destroyed the non-crystallizing field effectively

2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Xiujie Gong ◽  
Hongtao Zou ◽  
Chunrong Qian ◽  
Yang Yu ◽  
Yubo Hao ◽  
...  

Abstract Purpose The highly efficient degradation bacteria were selected from the humus from the very cold straw in China for many years to construct the in situ degradation bacteria, and the degradation efficiency of corn straw was determined by process optimization. Methods According to the main components of corn straw, through morphological, physiological, and biochemical screening, three highly efficient complementary degradation strains were selected to construct the compound flora, and the degradation efficiency was analyzed by Fourier transform infrared spectrometer, field emission scanning electron microscope, and X-ray diffractometer. Result The corn straw selected in this paper is mainly composed of cellulose (31.99%), hemicellulose (25.33%), and lignin (14.67%). Through the determination of enzyme activity, strain Streptomyces sp. G1T has high decomposition ability to cellulose and hemicellulose but weak utilization ability to lignin; strain Streptomyces sp. G2T has the strongest decomposition ability to cellulose and hemicellulose among the three strains. The decomposition ability of strain Streptomyces sp. G3T to lignin was the strongest among the three strains. Therefore, by compounding the three strains, the decomposition ability has been greatly improved. The optimal process conditions obtained by single factor and response surface method are as follows: pH is 7, temperature is 30 °C, inoculation amount is 5%, rotational speed is 210 rpm, and the weight loss rate of straw is 60.55% after decomposing for 7 days. A large amount of degradation of corn straw can be seen by Fourier transform infrared spectrometer, field emission scanning electron microscope, and X-ray diffractometer. Conclusion Streptomyces sp. G1T, Streptomyces sp. G2T, and Streptomyces sp. G3T screened from straw humus in very cold areas were used to construct in situ degradation bacteria, which had good straw degradation activity and had the potential to be used for straw treatment in cold areas after harvest. This characteristic makes the complex bacteria become a strong competitive candidate for industrial production, and it is also an effective biotechnology in line with the current recycling of resources.


2018 ◽  
Vol 283 ◽  
pp. 154-159
Author(s):  
Pusit Pookmanee ◽  
Pimpaka Sangthep ◽  
Jiratchaya Tafun ◽  
Viruntachar Kruefu ◽  
Suchanya Kojinok ◽  
...  

Copper oxide nanopowder was successfully synthesized by microwave method. Copper acetate and sodium hydroxide were used as the starting precursors. The microwave power was set to 800 Watt for 2-6 min and fine black nanopowder was obtained. The nanopowder was milled and dried at 80 °C for 12 h. The structure was identified by X-ray diffractometer (XRD). A monoclinic single phase of CuO nanopowder structure was obtained without calcination steps. The morphology was investigated by scanning electron microscope (FESEM). The particle was irregular in shape and agglomerated. The chemical composition was determined by energy dispersive X-ray spectrometer (EDXS). The chemical compositions showed the characteristic X-ray energy of copper (Kα=8.048 keV) and oxygen (Kα=0.525 keV), respectively. The functional group was investigated by fourier transform infrared spectrometer (FTIR). The functional groups of the vibration Cu-O bending showed the wavenumber at 491-615 cm-1.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5047
Author(s):  
Jun Cao ◽  
Peng Wang ◽  
Jie Shen ◽  
Qi Sun

Here, using Fe3O4@SiO2 as a precursor, a novel core-shell structure magnetic Cu2+ adsorbent (Fe3O4@zeolite NaA) was successfully prepared. Several methods, namely X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), Transmission electron microscope (TEM), Brunauer Emmett Teller (BET) and vibrating sample magnetometry (VSM) were used to characterize the adsorbent. A batch experiment was conducted to study the Cu2+ adsorption capacity of Fe3O4@zeolite NaA at different pH values, contact time, initial Cu2+ concentration and adsorbent does. It is found that the saturated adsorption capacity of Fe3O4@zeolite NaA on Cu2+ is 86.54 mg/g. The adsorption isotherm analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is more consistent with the Langmuir model, suggesting that it is a monolayer adsorption. Adsorption kinetics study found that the adsorption process of Fe3O4@zeolite NaA to Cu2+ follows the pseudo-second kinetics model, which means that the combination of Fe3O4@zeolite NaA and Cu2+ is the chemical chelating reaction. Thermodynamic analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is endothermic, with increasing entropy and spontaneous in nature. The above results show that Fe3O4@zeolite NaA is a promising Cu2+ adsorbent.


2011 ◽  
Vol 239-242 ◽  
pp. 2839-2842
Author(s):  
Hong Mei Mu ◽  
Peng Fei ◽  
Bi Tao Su ◽  
Zi Qiang Lei

A series of Fe3+-dopped polyaniline (Fe3+/PANI) nanomaterials with different morphologies and a higher conductivity were successfully synthesized using a simple and static interfacial polymerization by using FeCl3 as both oxidant catalyst and dopant. The effect of surfactants CTAB and SDS and the concentration of FeCl3 on the morphology and conductivity of Fe3+/PANI nanomaterial were investigated. The samples were characterized by Transmission Electron Microscopy (TEM), SDY-4 probes conductivity meter, X-ray Diffractometry (XRD), Energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy techniques. TEM’s results showed that their morphologies changed with the type of the surfactant and the concentration of FeCl3. Introducing surfactants CTAB and SDS into Fe3+/PANI remarkably improved the conductivity of the material. The conductivities of CTAB/Fe3+/PANI and SDS /Fe3+/PANI nanomaterials were respectively about 4.8×10-2 and 1.3×10-2 S/cm while the conductivity of Fe3+/PANI was found to be 1.5×10-4 S/cm. The different morphology and high conductivity may be ascribed to the mutual effects of the surfactant and oxidant.


Clay Minerals ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 391-404 ◽  
Author(s):  
J. E. F. C. Gardolinski ◽  
G. Lagaly ◽  
M. Czank

AbstractKaolinite and synthetic γ-Al(OH)3 (gibbsite or hydrargillite) were reacted with phenylphosphonic, phenylphosphinic and 2-nitrophenol-4-arsonic acids. The products were studied by powder X-ray diffraction, transmission electron microscopy/selected area electron diffraction/ energy dispersive X-ray/Fourier transform infrared and simultaneous thermogravimetric/differential thermal analysis. The acids were not intercalated but, instead, easily destroyed the structure of the minerals. Lamellar Al phenylphosphonate and aluminium phenylphosphinate and phenylarsonate with polymeric linear-chain structures were formed from kaolinite. The reaction between gibbsite and the same acids yielded almost identical products. No evidence of formation of grafted kaolinite derivatives after the reaction with phenylphosphonic acid was found.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95825-95835 ◽  
Author(s):  
Hui Yuan ◽  
Qing liang You ◽  
Lin Jie Song ◽  
Gui ying Liao ◽  
Hua Xia ◽  
...  

The carbon nanotubes (CNT)/polyimide (PI) composites were prepared by blending and characterized by Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and N2adsorption–desorption.


NANO ◽  
2013 ◽  
Vol 08 (03) ◽  
pp. 1350032 ◽  
Author(s):  
CHUNNIAN CHEN ◽  
CHENWEI YU ◽  
WEN FU

GO/ Cu2O nanocomposite had been successfully synthesized by electrostatic interactions method. X-ray powder diffraction (XRD), transmission electron microscope (TEM), selective-area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra confirmed the structure of the Cu2O and GO/ Cu2O nanocomposite. The catalytic degradation of Rhodamine B under the condition of ultrasound was investigated and the result of UV-Vis spectroscopy demonstrated that the nanocomposite can efficiently degraded it.


2015 ◽  
Vol 19 (56) ◽  
Author(s):  
Muflihatun ◽  
Siti Shofiah ◽  
Edi Suharyadi

Nanopartikel Nikel Ferit (NiFe2O4) telah disintesis dengan metode kopresipitasi dengan memvariasi konsentrasi NaOH dan suhu sintesis. Struktur kristal, ukuran partikel, dan morfologi dari sampel dianalisa menggunakan X-ray diffraction (XRD) dan transmission electron microscopy (TEM). Ukuran butir pada konsentrasi NaOH 3, 5, dan 10 M masing-masing adalah 5,7; 4,3; dan 4,2 nm, sedangkan pada suhu 60, 80, dan 150°C berturut-turut adalah 4,2; 4,9; dan 5,5 nm. Analisa fourier transform infrared (FTIR) menunjukkan dua puncak serapan pada rentang ~400-600 cm-1 yang terkait dengan site oktahedral dan tetrahedral pada struktur NiFe2O4. Sifat magnetik NiFe2O4 hasil analisa vibrating sample magnetometer (VSM) menunjukkan bahwa sampel berperilaku ferromagnetik dengan nilai koersivitasnya pada rentang 42-47 Oe. Sampel dengan variasi konsentrasi NaOH, koersivitasnya cenderung menurun dengan menurunnya ukuran partikel. Sementara sampel dengan variasi suhu, semakin kecil ukuran partikel, koersivitasnya cenderung meningkat. Pada 15 kOe, nilai magnetisasi terbesar (6,17 emu/g) diperoleh pada sampel dengan rasio fasa α-Fe2O3 paling rendah.


NANO ◽  
2021 ◽  
pp. 2150002
Author(s):  
Yalu Wu ◽  
Yinyin Xu ◽  
Jingbo Feng ◽  
Yan Zhang

The novel Al-MOF@PPy@Au nanocomposites were synthesized by an in-situ growth method. The prepared Al-MOF@PPy@Au nanocomposites were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-ray powder diffraction (XRD), Inductively Coupled Plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The catalytic properties of the prepared Al-MOF@PPy@Au nanocomposites with different content of Au were investigated. The results illustrated that the Al-MOF@PPy@Au(G) with 27.80 wt.% (w/w) Au obtained good catalytic performance. P-nitrophenol (4-NP), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB) were used to test the catalytic degradation of Al-MOF@PPy@Au(G) nanocomposites. The degradation efficiency of the Al-MOF@PPy@Au(G) nanocomposites for 4-NP, MO, MB and RhB reached 92.12%, 93.84%, 93.19% and 92.44% within 25 min, 7 min, 16 min and 2 min, respectively. The Al-MOF@PPy@Au(G) nanocomposites still have good degradation efficiency and good stability for 4-NP within one month being in water. The Al-MOF@PPy@Au(G) nanocomposites can be applied to the real water solution without causing the change of the degradation efficiency.


Sign in / Sign up

Export Citation Format

Share Document