The Design and Kinematic Simulation of the Return System in Ball Screw Pairs Used in Special Circumstance

2013 ◽  
Vol 437 ◽  
pp. 382-387
Author(s):  
Guo Ping Zhao ◽  
Yuan Xun Fan ◽  
Feng Yang ◽  
Li Yi Li

Base on analyzing the design demand of the return system in the ball screws, combining the sine curve and the quintic parabola curve, this paper introduces a new type of curve for steel balls used in heavy load bearings. By computing and programming in Matlab, this paper gets the sine-quintic parabola curve and conducts the kinematic simulation based on it. The results show that the balls can get in and out of the return system continuously and cause low impulse force on the return system. The highest impulse force happens when the balls access the return system. All this results can contribute for the later design and research of the internal circulation return system.

Robotica ◽  
2005 ◽  
Vol 24 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Hyeung-Sik Choi ◽  
Yong-Heon Park

We developed a new type of a human-sized BWR (biped walking robot) driven by the closed-chain type of a joint actuator. Each leg of the BWR is composed of three pitch joints and one roll joint. In all, a 12 degree-of-freedom robot, including four arm joints, was developed. The BWR was designed to walk autonomously; it is actuated by small 90W DC motors/drivers and is has DC batteries and controllers. A new type of the joint actuator for the BWR is composed of the four-bar-link mechanism driven by a ball screw which has high strength and high gear ratio despite its light weight.In this paper, analyses on the four-bar-link mechanism applied to the joint actuator and on the structure of the BWR are presented. Through walking experiments of the BWR, the superior trajectory-tracking ability of the proposed joint actuator is validated.


2021 ◽  
Vol 19 (3) ◽  
pp. 1-15
Author(s):  
Christopher P. Furner ◽  
Tom E. Yoon ◽  
Robert Zinko ◽  
Samuel H. Goh

Online review platforms compete to attract and retain consumers and facilitate purchases. They invest in sophisticated algorithms that prioritize the order in which product reviews are presented, seeking to provide consumers with easy access to useful information about the ability of a product to meet a need. These algorithms collect and use review and consumer characteristics to provide different consumers with different sets of reviews, seeking to increase purchase intention and reduce returns. This study proposes a new type of factor: the congruence between the consumer and the reviewer. The authors develop a simulation-based experiment in which 281 subjects are categorized based on their travel style and socioeconomic status, then read two reviews: one that appears to be written by someone similar to them and one that appears written by someone different from them. Findings demonstrate relationships between purchase intention and both of the congruence variables, as well as disposition to trust and an interaction between uncertainty avoidance and socioeconomic status.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987566
Author(s):  
Hanwen Yu ◽  
Xianying Feng ◽  
Qun Sun

This article presents a new micro-feed mechanism, whose main transmission component is the nut–rotary ball screw pair. The screw and nut are driven by two motors, and they rotate in the same direction, with their movements enabling micro-feeding. The main contribution of the micro-feed mechanism is to avoid the inevitable low-speed nonlinear creeping phenomenon caused by the inherent properties of traditional electromechanical servo system structure, thus realizing high precision micro-feed. In this study, the motion state of the working ball is analyzed using the principle of differential geometry, the friction at the contact points is calculated, the balance equation for force and moment is established, the influences of the screw and nut on the kinematic parameters of the ball at different velocities and the differences in the motion states of the ball in different drive modes are studied, and the mechanical efficiency of the dual-driven ball screw mechanism is calculated. The potential applications of the new micro-feed mechanism and the results of numerical analysis can be applied to advanced technology fields such as robotics, suspensions, powertrain, national defense, integrated electronics, optoelectronics, medicine, and genetic engineering, so that the new system can have a lower stable speed limit and achieve precise micro-feed control.


Author(s):  
Linxiang Sun ◽  
Janusz M. Krodkiewski ◽  
Nong Zhang

Modelling and analysis of a rotor-bearing system with a new type of active oil bearing are presented. The active bearing basically consists of a flexible sleeve and a pressure chamber. The deformation of the sleeve can be controlled by the chamber pressure during the operation, and so can the pressure distribution of the oil film. Finite Element Methods (FEMs) and the Guyan condensation technique were utilised to create mathematical models for both the rotor and the flexible sleeve. The hydrodynamic pressure distribution of the oil film, for the instantaneous positions and velocities of the flexible sleeve and rotor, was approximated by Reynolds equation. The influence of the chamber pressure on the stability of the rotor system was investigated by numerical simulation based on the nonlinear model. The results showed that the stability of the rotor-bearing system can be improved effectively by implementation of the active bearing.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zheng Ge ◽  
Weirui Wang

We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.


2016 ◽  
Vol 835 ◽  
pp. 643-648
Author(s):  
Jia Fang ◽  
Huang Dong

An improved nonlinear vibration isolator is proposed in this paper. It uses the exact solution derived load-displacement hysteresis curve formula based on energy method to calculate disc spring, combined with the finite element analysis. The static load capacity and dynamic mechanical property of this new type disc spring vibration isolator is validated through the static load tests or fatigue analysis. Compared with the rubber vibration isolator, the conclusion can be found: the new type vibration isolator has wider scope of vibration isolation, and is better in low frequency vibration isolation. These research achievements are of significant importance in the vibration isolation of heavy load and great shock mechanical equipment.


2018 ◽  
Vol 185 ◽  
pp. 00014
Author(s):  
Chin-Chung Wei ◽  
Wen-Hsien Kao

Effects of contact angle and groove factor of a heavy load ball-screw are discussed with the variation of contact forces at eight ball circulations. Contact forces are varying as a sinusoidal function of each circulation owing to the variation of phase angle. With the increase of contact angles, contact forces at each ball circulation are decreased and variation in each ball circulation. The decrease of the contact forces means that the contact stresses of contact areas are reduced. Fatigue life of raceways can thus be extended. Low groove factor can reduce skidding speed and friction coefficient. By the analyzing results, optimal transmission performance can be achieved in a heavy-loaded ball-screw.


2011 ◽  
Vol 199-200 ◽  
pp. 707-714
Author(s):  
Fu Ji Wang ◽  
Jian Wei Ma ◽  
Zhen Yuan Jia ◽  
Jiang Yuan Yang ◽  
Di Song

The contact between balls and screw races or nut races is a kind of typical non-conformal contact. The study of contact characteristics of ball screw will provide theoretical bases for improving transmission efficiency and working properties of ball screw. In this study, hertz contact theory was adopted to construct the solution formula of ball screw’s contact stiffness, ball screw’s contact characteristics in terms of axial load, design parameters and material properties was analyzed, and the contact deformation value of the contact between ball and screw races was got using finite element simulation method. The simulation result is close to the theoretic value, which proves the correctness of the theory analysis. The present study offers theoretical support for the design and application of high speed, heavy load and precision ball screws.


2012 ◽  
Vol 201-202 ◽  
pp. 1071-1075
Author(s):  
Shu Hua Zheng ◽  
Wen Fei Peng ◽  
Xue Dao Shu

High-speed and heavy-load are the targets to pursue over a long period of time in high-speed transportation. The key to solve this problem is making the components lightweight. Particularly, the hollow shaft is a new type of lightweight construction. This article explains systematically the current situation and the defects of forming technique for the hollow shafts. The solid shafts formed by Multi-Wedge Cross Wedge Rolling (MCWR) and the hollow shafts by Cross Wedge Rolling(CWR) are researched, and the key problems of hollow shafts formed in MCWR to solve emphatically are pointed out. At the same time, we obtain that MCWR will be the main technology in forming long shafts. The results in this paper provide a new direction for the hollow shafts to form in a high efficiency, energy saving and material saving method.


Sign in / Sign up

Export Citation Format

Share Document