Numerical Simulation of Cavitation Flow in a Centrifugal Pump

2013 ◽  
Vol 444-445 ◽  
pp. 509-516 ◽  
Author(s):  
Wei Guo Zhao ◽  
Xiao Xia He ◽  
Xiu Yong Wang ◽  
Yi Bin Li

Based on two phase homogeneous mixture model, numerical simulation of the cavitating flow was performed on a centrifugal pump. Cavity shapes and performance of the pump in variable cavitation numbers were obtained. Numerical results show that the numerical method can be used to predict the cavitation performance of centrifugal pump; the incipient cavitation number is predicted, and the cavity shape is similar with the experiment; cavitation usually appears in the suction surface of the blade and locates in the inlet side, and becomes longer to the outlet direction with lower cavitation number; when the cavitation number is relatively higher, cavitating region locates in the inlet area of the blade and is relatively stable, while develops and separates when cavitation number becomes lower; when the cavitation number equals to the incipient cavitation number, performance of the centrifugal pump has no change almost, only when cavitation number reduces to some extent, the head decreases abruptly and also the efficiency, which means the pump operates in a bad condition and this condition should be avoided in the practical operation.

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2003
Author(s):  
Chaoshou Yan ◽  
Jianfei Liu ◽  
Shuihua Zheng ◽  
Bin Huang ◽  
Jiacheng Dai

In order to study the wear law of the centrifugal pump flowing surface under different wear-rings clearance, the McLaury wear model was used to conduct the full-passage numerical simulation of solid-liquid two-phase flow in a single-stage single-suction centrifugal pump. The reliability of the numerical calculation method is verified by comparing the experimental data and numerical simulation results. The clearance is 0.1, 0.15, 0.2, 0.3 and 0.5 mm, respectively. The results show that the wear of the centrifugal pump blades is mainly concentrated in the end part and the inlet part of the blade, and the wear of the pressure surface at the end of the suction surface and the front of the blade is more serious. As the clearance increases, the maximum wear value in the impeller increases first and then decreases, reaching a maximum at 0.15 mm. With the increase of the clearance, the wear degree and the wear rate of the volute wall surface first increase and then decrease, and reach the maximum at 0.2 mm. With the increase of the clearance and the concentration of the fluid medium, the wear at the clearance of the centrifugal pump is more serious, and the severe wear area exhibits a point-like circumferential distribution.


2016 ◽  
Vol 8 (10) ◽  
pp. 168781401667375 ◽  
Author(s):  
Wei Li ◽  
Xiaoping Jiang ◽  
Qinglong Pang ◽  
Ling Zhou ◽  
Wei Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanping Wang ◽  
Chuanfeng Han ◽  
Ye Zhou ◽  
Zhe Lin ◽  
Jianfeng Ma ◽  
...  

The demand for a centrifugal pump with open impellers for conveying dense fine particles in solid-liquid two-phase flow has increased significantly in actual engineering. The wear of dense fine particles on the centrifugal pump is also exceedingly prominent, which affects the engineering efficiency and economic benefits. The two-phase flow in the open centrifugal pump is three-dimensional and unsteady; the movement of high-volume concentration particles in the centrifugal pump and its mutual influence on the two-phase flow, which results in the calculation of wear, are very intricate. To study the wear characteristics of the centrifugal pump with open impeller with high-volume concentration particles more accurately, numerical simulation and experimental comparison are carried out for the impeller wear of dense fine particles transported by the centrifugal pump with open impellers. Considering the relationship between particles and walls, we used the Fluent 18.0 built-in rebound function and wear model. The RNG k-ε model and the DDPM model were adopted in the numerical simulation, and the numerical solution for centrifugal pump wear was performed under flow rate (9.6 m3·h−1, 12.8 m3·h−1, 16 m3·h−1, and 19.2 m3·h−1), different particle sizes (0.048 mm, 0.106 mm, 0.15 mm, 0.27 mm, and 0.425 mm), and different particle volume concentrations (10%, 15%, 20%, 25%, and 30%), respectively. By comparing the serious wear positions of the impeller, the experimental results correspond well with the numerical simulation, which can be used to predict and study the wear characteristics of the impeller. The results show that the most serious area of blade wear is the middle part of the pressure surface, followed by the middle part of the upper part of the blade. The wear of the impeller is greatly affected by relevant parameters, such as pump flow rate, particle diameter, and particle volume concentration. These results can provide some basis for the wear-resistant design of dense fine particle impeller.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 769 ◽  
Author(s):  
Fan Zhang ◽  
Lufeng Zhu ◽  
Ke Chen ◽  
Weicheng Yan ◽  
Desmond Appiah ◽  
...  

This work seeks to apply the computational fluid dynamics–population balance model (CFD–PBM) to investigate the gas distribution and flow mechanism in the gas–liquid two-phase flow of a centrifugal pump. The findings show that the numerical simulation accurately captures the bubble distribution characteristics in the process of coalescence and breakage evolution. In addition, comparing the CFD–PBM with the Double Euler, the hydraulic head of the pump are similar, but the efficiency using the Double Euler is much higher—even close to single-phase. This is in contrast to previous experimental research. Then, the unsteady flow usually led to the formation of bubbles with larger diameters especially where vortices existed. In addition, the rotor–stator interaction was a main reason for bubble formation. Generally, it was observed that the coalescence rate was greater than the breakage rate; thus, the coalescence rate decreased until it equaled the breakage rate. Thereafter, the average diameter of the bubble in each part tended to be stable during the process of bubble evolution. Finally, the average diameter of bubbles seemed to increase from inlet to outlet. The results of this study may not only enhance the gas–liquid two-phase internal flow theory of centrifugal pumps, but also can serve as a benchmark for optimizations of reliable operation of hydraulic pumps under gas–liquid two-phase flow conditions.


2015 ◽  
Vol 32 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Yu-Liang Zhang ◽  
Zu-Chao Zhu

AbstractTo study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time


Author(s):  
Xiaoxu Du ◽  
Zhengdong Zhang

The steady non cavitation hydrodynamic characteristics of CLB4-55-1 tandem propeller and the steady cavitation flows of NACA66 hydrofoil are numerically studied firstly based on the RANS equations of homogeneous multiphase using CFD theory, combined with the SST k-ω turbulent model and Z-G-B cavitation model. Numerical simulation results are in good agreement with the experimental results, which indicates that the numerical method is reliable and accurate. Then, the cavitation performance of the tandem propeller are numerical simulated and analyzed. The results show that the computational model can predict the cavitation performance of tandem propeller accurately. The cavitation performance of tandem propeller is nearly the same as single propeller, however, the cavitation phenomenon of back propeller is greater than the head propeller at certain advance coefficient and cavitation number. The cavitation phenomenon will disappear with the increase of the advance coefficient or the cavitation number.


Author(s):  
Zicheng Zhang ◽  
Yun Dai ◽  
Yunqing Gu ◽  
Zhengzan Shi ◽  
Jiegang Mou

Abstract In order to improve the cavitation resistance of centrifugal pump, bionic groove surface structure was arranged on the suction surface of centrifugal pump blade which is the most prone to cavitation. Numerical simulation method was used to study the influence of different-shape groove blade on cavitation performance of centrifugal pump. The results showed that the head and efficiency of the centrifugal pump with circular grooved surface blades were close to the smooth surface blade centrifugal pump and higher than those with triangular grooved surface blades and rectangular grooved surface blades. The low pressure area of the circular groove blade was the smallest and the cavitation resistance was the best. At the critical cavitation margin point, circular groove blade can effectively reduce the probability of negative incidence, and the cavitation inhibition effect was the most obvious.


2014 ◽  
Vol 608-609 ◽  
pp. 66-70
Author(s):  
Jun Wang

Through the ship flow field of centrifugal pump that can be numerical simulation of three-dimensional turbulent, the paper reveals the pump flow pressure and velocity distribution. It also introduces the function of hardware and module testing system, according to the centrifugal pump performance test data, to achieve the minimum two multiplication curve fitting module using VC programming, curve fitting for the transformed data, the results show that the system is running stable, and convenient operation in the test process, simple maintenance and high reliability.


1970 ◽  
Vol 3 (1) ◽  
pp. 8-15
Author(s):  
Abdelmadjid Atif ◽  
Sara Sami

The paper refers to the analysis of flow fields inside a vaned diffuser and performance assessment of a laboratory-type centrifugal pump operating with air. The study deals with numerical simulation of the flow at design flow rate, with focus on velocity and pressure distributions across a diffuser passage. The aim is to highlight the flow structure how it leaves the impeller and evolves through the diffuser to understand the mechanism of pressure recovery. The performance assessment consists of evaluating diffuser effectiveness. The numerical results are compared to experimental measurements for validation.


Sign in / Sign up

Export Citation Format

Share Document