Rotor/Stator Interactions Study under Different Operating Condition in Axial Flow Pump

2013 ◽  
Vol 456 ◽  
pp. 168-172 ◽  
Author(s):  
Wei Dong Shi ◽  
Su Qing Wu ◽  
Jie Yao

Rotor/Stator interaction in axial-flow pump is the main reason for pressure fluctuates, which impacts on operating security of axial flow pump. In order to study Rotor/Stator interaction phenomenon in axial flow pump, TJ04-ZL-02 hydraulic axial flow pump model is investigated under different operating condition by unsteady simulation based on k-ω turbulence model. Numerical results show that: different flow operating conditions will lead to different Rotor/Stator interaction phenomenon, and also different pressure fluctuation. Fluctuation amplitude in design operating condition is smaller than off design operating condition. So the study proves that pump running in the design operating conditions has important beneficial to the pump operational stability.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Yang ◽  
Hao-ru Zhao ◽  
Chao Liu

In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.


Author(s):  
Fang-Ping Tang ◽  
Chao Liu ◽  
Ji-Ren Zhou ◽  
Hua Yang ◽  
Li Cheng

In this study, an axial flow pump impeller without guide vanes is experimentally investigated. The impeller used in the experiments consists of four blades. The particle image velocimetry technique and a five-hole probe have been used. Measurements of flow velocities in the outer part of the impeller have been made. PIV measurements have been realized in 12 meridian planes between blade-to-blade for design and off-design operating conditions. The meridian velocity is obtained with phase averaged method and the total circumferential mean velocity is obtained with an arithmetical average over the 12 circumferential data. The calculation is based on the CFX-TASC flow CFD code solving the three-dimensional Reynolds-averaged Navier-Stokes equation with RNG k–ε model of turbulence. The paper focuses on the comparisons of the results. Difference for the flow field between numerical and experimental results is small at large and design flow rate, while big difference occurs at small flow rate. It indicates that the numerical model is not suitable for separation flow.


Author(s):  
Linlin Cao ◽  
Hironori Honda ◽  
Hiroaki Yoshimura ◽  
Satoshi Watanabe ◽  
Akinori Furukawa

As a high specific speed pump, the contra-rotating axial flow pump with two rotors rotating reversely has been proved with higher hydraulic and cavitation performance, while in our previous researches, our prototype rotors designed with equal rotational speeds for both the front and the rear rotors was also confirmed with the strong potential interaction between two blade rows. In the present study, the experimental investigations were focused on the rotor-rotor interactions in the contra-rotating rotors under two rotational speed combinations, an equal speed and a different speed ones with the lower speed of rear rotor; the latter is determined aiming at relieved rotor-rotor interaction. As the major experimental approach, casing wall static pressure measurements were conducted at pressure taps covering from upstream to downstream of the both rotors, and the pressure fluctuation modes were investigated by the FFT analyses. By series of pressure taps with different peripheral locations prepared at several axial locations, the pressure fluctuation modes with frequencies non-synchronous to the BPF (blade passing frequency) components were recognized, and confirmed to be related to the rotor-rotor interaction on the basis of theoretical analyses on the rotor-stator interaction in conventional rotor-stator types.


1997 ◽  
Vol 119 (3) ◽  
pp. 680-685 ◽  
Author(s):  
R. Laborde ◽  
P. Chantrel ◽  
M. Mory

A combined study of tip clearance and tip vortex cavitations in a pump-type rotating machine is presented. Cavitation patterns are observed and cavitation inception is determined for various gap heights, clearance and blade geometries, and rotor operating conditions. An optimum clearance geometry is seen to eliminate clearance cavitation when the clearance edge is rounded on the blade pressure side. The gap height has a strong effect on clearance cavitation inception, but the trends vary considerably when other parameters are also modified. The gap height and clearance geometry have less influence on tip vortex cavitation but forward and backward blade skew is observed to reduce and increase tip vortex cavitation, respectively, as compared to a blade with no skew.


Author(s):  
Chao Liu ◽  
Fan Yang ◽  
Yan Jin ◽  
Hua Yang

Three-dimensional flow-fields in a high-efficient axial flow pump system were simulated by CFD to further study the internal flow characteristics. The internal flow patterns of the pump system were obtained at large, small and optimum operating conditions. The highest efficiency of pump system measured and calculated are 82.57% and 81% respectively at blade angle 0°. For the suction passage, the axial velocity distribution uniformity reach 97.51%, and the hydraulic loss is 0.039m, the pipe efficiency calculated is 98.5% at the optimum operating conditions. The maximum velocity is 1.429 m/s in the range of operating conditions, which meet the requirement of National standard. The performances predicted were compared with measurement results. It was found that the calculated results agree well with the measured results. The overall flow pattern of the pump system is uniform and smooth, and the hydraulic loss is very small which gives the excellent hydraulic performances of pump system.


2008 ◽  
Author(s):  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

In highly loaded axial flow pumps considerable changes of the flow behavior are known when altering the flow rate from design point operation to part load operation. The flow structure which is changing from stable operating conditions to stalled flow conditions has been investigated experimental by Kosyna and Stark. The measured results are compared to results obtained by numerical simulations in a previous paper of the authors. Time dependent three dimensional flow fields in this axial flow pump have been investigated by unsteady Reynolds averaged Navier-Stokes simulations. The time resolved flow fields are compared to the time averaged results of the measurements for the design point and also for part load operating conditions. The change in the vortex structure induced by the tip leakage flow is investigated in detail for different conditions of operation. Also the part load recirculation vortex dominating the rotor tip flow at deep stall conditions as well as the cross passage vortex is visualized by evaluating the numerical results.


Author(s):  
Desheng Zhang

The primary goal of this work focuses on the cavitating vortices in the tip region of an axial-flow pump with 3 and 4 blades mainly based on the high-speed imaging experiments, with special attention on the trajectory and dynamics of a large-scale cavitation structure. The hydraulic and cavitation performance between two impellers were compared, and it can be found that the model with 4 blades has a relative wide range of stable operating conditions as well as the better anti-cavitation ability. By the analysis of the cavitation curves, it confirms that the highly unsteady tip cavitation cloud near the blade trailing edge should be responsible for the severe degradation of the performance. According to the detailed study on the cavitation evolution in the two impellers, it is observed that the trajectory of tip cavitating vortices for different flow rates seems very similar determined by the operating conditions. However, the dynamics varies significantly, which is associated with the blade loading and flow passage width.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kan Kan ◽  
Qingying Zhang ◽  
Zhe Xu ◽  
Huixiang Chen ◽  
Yuan Zheng ◽  
...  

AbstractThe ultra-low head pump stations often have bidirectional demand of water delivery, so there is a risk of runaway accident occurring in both conditions. To analyze the difference of the runaway process under forward runaway condition (FRC) and backward runaway condition (BRC), the whole flow system of a horizontal axial flow pump is considered. The Shear-Stress Transport (SST) k–ω model is adopted and the volume of fluid (VOF) model is applied to simulate the water surface in the reservoirs. Meanwhile, the torque balance equation is introduced to obtain the real time rotational speed, then the bidirectional runaway process of the pump with the same head is simulated. In addition, the vortex transport equation and swirl number are proposed to reveal the flow characteristics during the runaway process. The results show that the runaway process can be divided into five stages: the drop, braking, rising, convergence and runaway stages, according to the changing law of torque curve. In the rising stage, the pressure difference on the blade surface continues to increase, which contributes to the abnormal torque increase. In this stage, the flow hits the pressure surface (PS) at a faster speed enlarging the pressure on PS, and the flow separation takes place on the suction surface (SS) weakening the pressure on SS. During the convergence and runaway stage, the pulsation amplitude of torque and axial force under FRC is obviously larger than those under BRC. This is because the rotation frequency of the vortex rope is the same as main pressure fluctuation frequency in impeller under FRC, which enhances the pulsation amplitude. Whereas the vortices are broken due to the inhibitive effect from guide vanes under BRC.


1964 ◽  
Vol 86 (1) ◽  
pp. 84-88
Author(s):  
R. Baldur

A reversible axial-flow pump-turbine should have symmetrical airfoil sections on runner blades and diffuser vanes. A theoretical method is given which leads to an efficient use of such sections under all operating conditions. Some general charts have been prepared and these can be used for initial design considerations.


Sign in / Sign up

Export Citation Format

Share Document