Microstructure and Wettability on the Elytral Surface of Aquatic Beetle

2013 ◽  
Vol 461 ◽  
pp. 731-740 ◽  
Author(s):  
Ming Xia Sun ◽  
Ai Ping Liang ◽  
Gregory S. Watson ◽  
Jolanta A. Watson ◽  
Yong Mei Zheng ◽  
...  

The microstructures on elytral surface of aquatic beetles belonging to Hydrophilidae and Dytiscidae were observed under an environment scanning microscope, and the wettabilities were determined with an optical contact angle meter. The results show the elytral surfaces are relatively smooth compared to the structures of other insects such as the butterfly wing scales or cicada wing protrusions. They exhibit a polygonal structuring with grooves and pores being the main constituent units. The contact angles (CAs) range from 47.1oto 82.1o. The advancing and receding angles were measured by injecting into and withdrawing a small amount of water on the most hydrophilic (with a contact angle of 47.1o) and hydrophobic (with a contact angle of 82.1o) elytral surfaces, which illustrates the vital role of three-phase contact line (TCL) in the wetting mechanism of aquatic beetle elytral surfaces.

Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


Author(s):  
Neeharika Anantharaju ◽  
Mahesh Panchagnula ◽  
Wayne Kimsey ◽  
Sudhakar Neti ◽  
Svetlana Tatic-Lucic

The wettability of silicon surface hydrophobized using silanization reagents was studied. The advancing and receding contact angles were measured with the captive needle approach. In this approach, a drop under study was held on the hydrophobized surface with a fine needle immersed in it. The asymptotic advancing and receding angles were obtained by incrementally increasing the volume added and removed, respectively, until no change in angles was observed. The values were compared with the previously published results. Further, the wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The surfaces were prepared with the wet etching process and contain posts and holes of different sizes and void fractions. The surface geometry brought up a scope to study the Wenzel (filling of surface grooves) and Cassie (non filling of the surface grooves) theories and effects of surface geometry and roughness on the contact angle. Experimental data point to an anomalous behavior where the data does not obey either Wenzel or Cassie type phenomenology. This behavior is explained by an understanding of the contact line topography. The effect of contact line topography on the contact angle was thus parametrically studied. It was also inferred that, the contact angle increased with the increase in void fraction. The observations may serve as guidelines in designing surfaces with the desired wetting behavior.


2017 ◽  
Vol 8 ◽  
pp. 1714-1722 ◽  
Author(s):  
Håkon Gundersen ◽  
Hans Petter Leinaas ◽  
Christian Thaulow

The cuticles of most springtails (Collembola) are superhydrophobic, but the mechanism has not been described in detail. Previous studies have suggested that overhanging surface structures play an important role, but such structures are not a universal trait among springtails with superhydrophobic cuticles. A novel wetting experiment with a fluorescent dye revealed the extent of wetting on exposed surface structures. Using simple wetting models to describe the composite wetting of the cuticular surface structures results in underestimating the contact angles of water. Including the three-phase line tension allows for a prediction of contact angles in the observed range. The discrepancy between the contact angle predicted by simple models and those observed is especially large in the springtail Cryptopygus clavatus which changes, seasonally, from superhydrophobic to wetting without a large change in surface structure; C. clavatus does not have overhanging surface structures. This large change in observed contact angles can be explained with a modest change of the three-phase line tension.


2020 ◽  
Author(s):  
Kwi Shan Seah ◽  
Vinodkumar Saranathan

AbstractThe development of color patterning in lepidopteran wings is of fundamental interest in evolution and developmental biology. While significant advances have recently been made in unravelling the cell and molecular basis of lepidopteran pigmentary coloration, the morphogenesis of wing scales, often involved in structural color production, is not well understood. Contemporary research focuses almost exclusively on a few nymphalid model taxa (e.g., Bicyclus, Heliconius), despite an overwhelming diversity across lepidopteran families in the hierarchical nanostructural organization of the scale. Here, we present a time-resolved, comparative developmental study of hierarchical wing scale nanostructure in Parides eurimedes and other papilionid species. Our results uphold the putative conserved role of F-actin bundles in acting as spacers between developing ridges as previously documented in several nymphalid species. While ridges are developing, the plasma membrane manifests irregular crossribs, characteristic of Papilionidae, which delineate the accretion of cuticle into rows of planar disks in between ridges. Once ridges have grown, Arp2/3 appears to re-organize disintegrating F-actin bundles into a reticulate network that supports the extrusion of the membrane underlying the disks into honeycomb-like tubular lattices of air pores in cuticle. Our results uncover a previously undocumented role for F-actin in the morphogenesis of wing scale nanostructures prominently found in Papilionidae. They are also relevant to current challenges in engineering of mesophases, since understanding the diversity and biological basis of hierarchical morphogenesis may offer facile, biomimetic solutions.


Author(s):  
Magomed Pashevich Dokhov

The article uses the thermodynamics of interfacial phenomena to justify the fact that Young’s equations can correctly describe the three-phase equilibrium with any type of interatomic bonds. Wetting, adhesion, dissolution, surface adsorption, and other surface phenomena are important characteristics, whichlargely determine the quality and durability of materials, and the development of a number of production techniques, including welding, soldering, baking of metallic and non-metallic powders, etc. Therefore, it is important to study them.Using experimental data regarding surface energies of liquids (melts) and contact angles available in the literature, we calculated the surface energies of many solid metals, oxides, carbides, and other inorganic and organic materials without taking into account the amount of the interfacial energy at the solid-liquid (melt) interface. Some researchers assumed that in case of an acute contact angle the interfacial energy is low. Therefore, they neglected it and assumed it to be zero.Others knew that this value could not be measured, that is why they measured and calculated the difference between the surface energy of a solid and the interfacial energy of a solid and a liquid (melt), which is equal to the product of the surface energy of this liquid by the cosine of the contact angle. It is obvious that these methods of determining the surface energy based on such oversimplified assumptions result in poor accuracy.Through the use of examples this paper shows how the surface energies of solids were previously calculated and how the shortcomings of previous calculations can be corrected


2019 ◽  
Author(s):  
Robert O. David ◽  
Jonas Fahrni ◽  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Dominik Brühwiler ◽  
...  

Abstract. It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice nucleating active site. By using sol-gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water-silica contact angle and pore width on PCF is investigated. We find that contact angle and pore width play an important role in determining the relative humidity required for capillary condensation as predicted by the Kelvin effect and subsequent ice nucleation at cirrus temperatures. For the pore diameters and contact angles covered in this study, 2.2–9.2 nm and 15–78°, respectively, our results reveal that the contact angle plays an important role in predicting the humidity required for pore filling while the pore diameter determines the ability of pore water to freeze. For T > 235 K and below water saturation, pore diameters and contact angles were not able to predict the freezing ability of the particles suggesting an absence of active sites, thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice nucleating abilities of particles at cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere.


2006 ◽  
Vol 309-311 ◽  
pp. 1199-1202 ◽  
Author(s):  
Abraham Salehi ◽  
Stanley Tsai ◽  
Vivek Pawar ◽  
Jeff Sprague ◽  
Gordon Hunter ◽  
...  

The wettability behavior of orthopaedic materials influences the fluid film layer that affects both the friction and wear of the articulating surfaces in total joint arthroplasty. This study examined the wettability of various orthopaedic bearing materials such as alumina, zirconia, cobalt chrome (CoCr), and oxidized zirconium (OxZr). Diamond-like carbon (DLC) coating on CoCr was also examined. Additionally, the effect of radius of curvature was examined using OxZr femoral heads of various diameters. The contact angle of the liquid droplet on the surface of the material was measured using a optical contact angle method. Both water and bovine serum with 20 g/L protein concentration were used during testing, with a droplet size of 0.25 -L. The droplet was dispensed from an automated syringe and brought into contact with the sample surface. The contact angle was then measured by fitting polynomial curves to the sample surface and drop geometry. Ten individual drops were analyzed on each test component, with at least three test components for each material. There were no differences in contact angles with changing head size or when using serum compared to water. The alumina, OxZr, and zirconia femoral heads all exhibited a similar contact angle, while CoCr and DLC showed significantly greater contact angles. The smaller contact angles for the oxide ceramic surfaces indicate that they tend to be more wettable than the metals, which may help explain their lower friction and superior adhesive wear performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Akhlis Rizza ◽  
Widya Wijayanti ◽  
Nurkholis Hamidi ◽  
I. N. G. Wardana

This study aims to experimentally determine the role of intermolecular forces on the contact angle of vegetable oil droplets. Contact angles were recorded using a microscope and measured using digital software. The results show that the surface tension of vegetable oils is influenced by the London force between the electron clouds of molecules. The process of cooling increases vegetable oil contact angles, due to the decreased kinetic energy of constituent molecules and increased London force on the molecules. A decrease in temperature causes the surrounding water vapor to condense, which adheres to the droplet surface (due to the hydrophilic properties of molecules). Hydrogen bonds develop after moisture adheres to the surface. Further, water molecules on the droplet surface reduce the surface tension, because of hydrogen bonds between the molecules on the droplet surface and moisture. Hydrogen bonds among the molecules force water molecules to accumulate on the droplet surface, which suppresses the droplet surface; therefore the contact angle decreases.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 747-751 ◽  
Author(s):  
Lichao Gao ◽  
Alexander Y. Fadeev ◽  
Thomas J. McCarthy

AbstractThe wettability of several superhydrophobic surfaces that were prepared recently by simple, mostly single-step methods is described and compared with the wettability of surfaces that are less hydrophobic. We explain why two length scales of topography can be important for controlling the hydrophobicity of some surfaces (the lotus effect). Contact-angle hysteresis (difference between the advancing, θA, and receding, θR, contact angles) is discussed and explained, particularly with regard to its contribution to water repellency. Perfect hydrophobicity (θA/θR = 180°/180°) and a method for distinguishing perfectly hydrophobic surfaces from those that are almost perfectly hydrophobic are described and discussed. The Wenzel and Cassie theories, both of which involve analysis of interfacial (solid/liquid) areas and not contact lines, are criticized. Each of these related topics is addressed from the perspective of the three-phase (solid/liquid/vapor) contact line and its dynamics. The energy barriers for movement of the three-phase contact line from one metastable state to another control contact-angle hysteresis and, thus, water repellency.


Sign in / Sign up

Export Citation Format

Share Document