Drying Comparison of Nonhygroscopic and Hygroscopic Materials

2013 ◽  
Vol 465-466 ◽  
pp. 637-641 ◽  
Author(s):  
Zawati Harun ◽  
Tze Ching Ong ◽  
Rosli Ahmad

This paper investigates and presents the simulation of drying for hygroscopic and nonhygroscopic materials. This present work used a coupled mathematical model of mass, heat and gas transfer that implemented to finite element method in two dimensional and numerically compute using Skyline solver to capture highly nonlinear transient process. Bound water contribution was taken into account in the drying of hygroscopic materials by incorporating constitutive equation of bound water. The results showed drying process can be divided into three periods named constant rate period (CRP), first falling rate period (FRP1) and second falling rate period (FRP2). Capillary action is dominated during CRP before vapour diffusion takes place in FRP1. Bound water movement is generated by vapour pressure gradient exists that represent hygroscopic material.

Author(s):  
Kivaandra Dayaa Rao Ramarao ◽  
Zuliana Razali ◽  
Chandran Somasundram

Drying kinetics of Malaysian Moringa oleifera leaves was investigated using a convective-air dryer. The drying parameters were: temperature (40, 50, 60, 70 °C), air velocity (1.3 m s<sup>–1</sup>, 1.7 m s<sup>–1</sup>). The drying process took place in the falling rate period and there was an absence of a constant rate period in this experiment. Six mathematical models (Lewis, Henderson and Pabis, Wang and Singh, Peleg, Page, and logarithmic) were selected for the description of drying characteristics of the leaves. The Wang and Singh model was determined as the best model based on the highest overall coefficient determinant (R<sup>2</sup>) and the lowest overall root mean square error (RMSE). The effective diffusivity (D<sub>eff</sub><sub> </sub>) was also calculated which was in the range of 3.98 × 10<sup>–11</sup> m<sup>2</sup> s<sup>–1</sup> to 1.74 × 10<sup>–10</sup> m<sup>2</sup> s<sup>–1. </sup>An Arrhenius relation was constructed to determine the activation energy for the samples in the convective air dryer. The activation energy for M. oleifera leaves was 39.82 kJ mol<sup>–1</sup> and 33.13 kJ mol<sup>–1</sup> at drying velocities of 1.3 m s<sup>–1</sup> and 1.7 m s<sup>–1</sup>, respectively.


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1520
Author(s):  
Zheng Jiang ◽  
Quanzhong Huang ◽  
Gendong Li ◽  
Guangyong Li

The parameters of water movement and solute transport models are essential for the accurate simulation of soil moisture and salinity, particularly for layered soils in field conditions. Parameter estimation can be achieved using the inverse modeling method. However, this type of method cannot fully consider the uncertainties of measurements, boundary conditions, and parameters, resulting in inaccurate estimations of parameters and predictions of state variables. The ensemble Kalman filter (EnKF) is well-suited to data assimilation and parameter prediction in Situations with large numbers of variables and uncertainties. Thus, in this study, the EnKF was used to estimate the parameters of water movement and solute transport in layered, variably saturated soils. Our results indicate that when used in conjunction with the HYDRUS-1D software (University of California Riverside, California, CA, USA) the EnKF effectively estimates parameters and predicts state variables for layered, variably saturated soils. The assimilation of factors such as the initial perturbation and ensemble size significantly affected in the simulated results. A proposed ensemble size range of 50–100 was used when applying the EnKF to the highly nonlinear hydrological models of the present study. Although the simulation results for moisture did not exhibit substantial improvement with the assimilation, the simulation of the salinity was significantly improved through the assimilation of the salinity and relative solutetransport parameters. Reducing the uncertainties in measured data can improve the goodness-of-fit in the application of the EnKF method. Sparse field condition observation data also benefited from the accurate measurement of state variables in the case of EnKF assimilation. However, the application of the EnKF algorithm for layered, variably saturated soils with hydrological models requires further study, because it is a challenging and highly nonlinear problem.


Author(s):  
Patrick J. O’Heron ◽  
Parviz E. Nikravesh ◽  
Ara Arabyan ◽  
Donald L. Kunz

Abstract A model is presented that can be used to simulate the highly nonlinear transient dynamics associated with advanced rotorcraft conversion processes. Multibody equations of motion of the fuselage, the tilting wing, and the rotor assembly are derived using a minimal set of coordinates. An enhanced aerodynamics model is employed to account for unsteadiness and nonlinearity in the near-wake aerodynamics, with a dynamic uniform inflow to compute the far-wake aerodynamics, and a flight control system is employed to compute the blade pitch settings that are necessary to achieve a desired flight path. The model is subjected to a demanding flight path simulation to illustrate that it can perform vertical take-off, hover, tilt-wing conversion, and high-speed forward flight maneuvers effectively.


2011 ◽  
Vol 17 (2) ◽  
pp. 199-205 ◽  
Author(s):  
İbrahim Doymaz

In this study, sun drying behaviours of green bean and okra were investigated. Drying experiments were conducted in Iskenderun-Hatay, Turkey. The drying study showed that the times taken for drying of green bean and okra from the initial moisture contents of 89.5% and 88.7% (w.b.) to final moisture content of around 15?0.5% (w.b.) were 60 and 100 h in open sun drying, respectively. The constant rate period is absent in drying curves. The drying process took place in the falling rate period. The drying data were fitted to thirteen thin-layer drying models. The performance of these models was investigated by comparing the determination of coefficient (R2), reduced chi-square (c2) and root mean square error (RMSE) between the observed and predicted moisture ratios. Estimations by Approximation of diffusion (for green bean) and Midilli et al. models (for okra) were in good agreement with the experimental data obtained.


1985 ◽  
Vol 107 (2) ◽  
pp. 123-130 ◽  
Author(s):  
G. Tzeghai ◽  
S. Weinbaum ◽  
R. Pfeffer

It is now generally accepted that the intercellular cleft between adjacent endothelial cells is the primary pathway for the transluminal movement of water and small ions in the vasculature. A steady-state theoretical model has been developed to show quantitatively how the geometry of the intercellular cleft between adjacent endothelial cells is related to both the water movement and pressure distribution in the subendothelial space and to examine how the existence of a subendothelial interaction layer affects the hydraulic resistance of the media of vessels of varying wall thickness. The velocity and pressure fields in the media are described using porous matrix theory based on Darcy’s law and a lubrication-type analysis is used to describe the flow in a variable geometry intercellular cleft. These two equations are solved simultaneously to determine the unknown pressure distribution beneath the endothelium and the flow in the arterial media. Application of this model shows that, when the tight junction in the cleft is 26 Å or less, more than half of the total hydraulic resistance of the wall occurs across the endothelial cell monolayer, for a vessel whose wall thickness is less than 0.02 cm. This finding is in good agreement with the experimental findings of Vargas, et al. (1978) for rabbit aorta. Contrary to previous belief, the model shows that the filtration resistance of an arterial wall with intact endothelium does not scale linearly with wall thickness due to the highly nonlinear resistance of the endothelial interaction layer.


1973 ◽  
Vol 16 (1) ◽  
pp. 0183-0188 ◽  
Author(s):  
G. L. Gentzler ◽  
F. W. Schmidt

Author(s):  
Xue Luo ◽  
Fan Gu ◽  
Robert L. Lytton

The aging of asphalt pavements is a key factor that influences pavement performance. Aging can be characterized by laboratory tests and prediction models. Common aging prediction models use the change of physical or chemical properties of asphalt binders based on regression techniques or aging reaction kinetics. The objective of this study was to develop a kinetics-based aging prediction model for the mixture modulus gradient in asphalt pavements to study long-term in-service aging. The proposed model was composed of three submodels for baseline modulus, surface modulus, and aging exponent to define the change of the mixture modulus with pavement depth. The model used kinetic parameters (aging activation energy and preexponential factor) of asphalt mixtures and combined the two reaction rate periods (fast-rate and constant-rate). Laboratory-measured modulus gradients of 29 field cores at different ages were used to determine the model parameters. The laboratory testing condition was converted to the field condition at a given age and corresponding temperature by introducing the rheological activation energy to quantify the temperature dependence of field cores at each age. The end of the fast-rate period or the beginning of the constant-rate period was accurately identified to model these two periods and to determine the associated parameters separately. The results showed that the predictions matched well with the measurements and the calculated model parameters were verified. The proposed aging prediction model took into account the major factors that affect field aging speed of an asphalt pavement, such as the binder type, aggregate type, air void content, pavement depth, aging temperature, and aging time.


2007 ◽  
Vol 13 (1) ◽  
pp. 35-40 ◽  
Author(s):  
O. P. Sobukola ◽  
O. U. Dairo ◽  
L. O. Sanni ◽  
A. V. Odunewu ◽  
B. O. Fafiolu

Open sun drying experiments in thin layers of crain-crain (CC), fever (FV) and bitter (BT) leaves grown in Abeokuta, Nigeria were conducted. The drying process took place in the falling rate period and no constant rate period was observed from the drying curves. Eight thin layer mathematical drying models were compared using the multiple determination coefficients (R2), reduced chi-square (χ2) and root mean square error (RMSE) between the observed and predicted moisture ratios. Accordingly, Midilli et al. model satisfactorily described the drying curves of the three leaves with R2 of 0.9980, χ2 of 2.0×10-4 and RMSE of 1.09×10-2 for CC leaves; R2 of 0.9999, χ2 of 2×10-6 and RMSE of 1.11×10-3 for FV leaves; and R2 of 0.9998, χ2 of 1.9×10-5 and RMSE of 3.3×10-3 for BT leaves. The effective diffusivity was found to be 52.91×10-10, 48.72×10-10 and 43.42×10-10 m2/s for CC, BT and FV leaves, respectively.


Sign in / Sign up

Export Citation Format

Share Document