scholarly journals Drying of green bean and okra under solar energy

2011 ◽  
Vol 17 (2) ◽  
pp. 199-205 ◽  
Author(s):  
İbrahim Doymaz

In this study, sun drying behaviours of green bean and okra were investigated. Drying experiments were conducted in Iskenderun-Hatay, Turkey. The drying study showed that the times taken for drying of green bean and okra from the initial moisture contents of 89.5% and 88.7% (w.b.) to final moisture content of around 15?0.5% (w.b.) were 60 and 100 h in open sun drying, respectively. The constant rate period is absent in drying curves. The drying process took place in the falling rate period. The drying data were fitted to thirteen thin-layer drying models. The performance of these models was investigated by comparing the determination of coefficient (R2), reduced chi-square (c2) and root mean square error (RMSE) between the observed and predicted moisture ratios. Estimations by Approximation of diffusion (for green bean) and Midilli et al. models (for okra) were in good agreement with the experimental data obtained.

2007 ◽  
Vol 13 (1) ◽  
pp. 35-40 ◽  
Author(s):  
O. P. Sobukola ◽  
O. U. Dairo ◽  
L. O. Sanni ◽  
A. V. Odunewu ◽  
B. O. Fafiolu

Open sun drying experiments in thin layers of crain-crain (CC), fever (FV) and bitter (BT) leaves grown in Abeokuta, Nigeria were conducted. The drying process took place in the falling rate period and no constant rate period was observed from the drying curves. Eight thin layer mathematical drying models were compared using the multiple determination coefficients (R2), reduced chi-square (χ2) and root mean square error (RMSE) between the observed and predicted moisture ratios. Accordingly, Midilli et al. model satisfactorily described the drying curves of the three leaves with R2 of 0.9980, χ2 of 2.0×10-4 and RMSE of 1.09×10-2 for CC leaves; R2 of 0.9999, χ2 of 2×10-6 and RMSE of 1.11×10-3 for FV leaves; and R2 of 0.9998, χ2 of 1.9×10-5 and RMSE of 3.3×10-3 for BT leaves. The effective diffusivity was found to be 52.91×10-10, 48.72×10-10 and 43.42×10-10 m2/s for CC, BT and FV leaves, respectively.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Adesola A Satimehin

Gelatinized white yam cubes, having a moisture content of 196% dry basis were dried in a convective dryer under different conditions of air temperature (40, 50, 60 and 70°C) and relative humidity (20 - 50%). There was no constant rate period throughout the entire drying period as drying took place entirely during a falling rate period. The effect of temperature was more pronounced than that of relative humidity. The drying data were fitted to five thin-layer drying models. The goodness of fit of the models were evaluated by comparing the percent mean relative deviation modulus (E%), RMSE, χ2 and R2 between their observed and predicted moisture ratio. The Binomial approximation of Fick's diffusion equation gave the best fit to the drying data as the highest values of R2 and the lowest values of χ2 and RMSE were consistently obtained with the Binomial model equation.


2017 ◽  
Vol 7 (2) ◽  
pp. 14 ◽  
Author(s):  
Luqman Ebow Ibn Daud ◽  
Isaac Nyambe Simate

As a means of adding value to pineapple production and minimising post-harvest losses, sliced pineapples were dried using a Solar Conduction Dryer (SCD) and appropriate thin layer drying models to predict drying were developed whilst the performance of the SCD was also investigated. For the period of the experiment, ambient temperature and temperature in the dryer ranged from 24 to 37 °C and 25 to 46 ℃ respectively. The performance of the dryer was compared to open sun drying using pineapple slices of 3-5 mm in thickness where the slices were reduced from an average moisture content of 85.42 % (w.b.) to 12.23 % (w.b.) by the SCD and to 51.51 % (w.b.) by the open sun drying in 8 hours effective drying time. Pineapple slices of thicknesses 3 mm, 5 mm, 7 mm and 10 mm were simultaneously dried in the four drying chambers of the SCD and their drying curves simulated with twelve thin layer drying models. The Middilli model was found as the best fitted thin layer drying model for sliced pineapples. The optimum fraction of drying tray area that should be loaded with pineapples was also investigated by simultaneously loading 7 mm slices of pineapples at 50, 75, and 100 percent of drying tray area. Loading the slices at 50, 75 and 100 percent of drying tray area gave overall thermal efficiencies of 23, 32 and 44 percent, respectively, hence loading pineapple slices at 100 percent drying tray area was recommended as the best.


2018 ◽  
Vol 12 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kamil Neyfel Çerçi ◽  
Özge Sufer

In this study, the dehydration behavior of zucchini using solar assisted drying system was examined according to 22 thin layer drying models available in literature. The correlation coefficient (R2), chi-square (χ2) and root mean square error (RMSE) values were calculated to check the suitability of models by non-linear regression analysis. It was found that Cubic and Modified Midilli-1 models were the most suitable equations and their R2 values were calculated as 0.99963. χ2 and RMSE values of related mathematical expressions were 1.89343×10‒5, 1.91692×10‒5 and 0.01685×10‒3, 0.01721×10‒3 respectively. In addition, heat transfer, mass transfer and diffusion coefficients, which were important parameters in design of drying systems were also determined as 5.18124 W/m2°C, 1.57129×10‒7 m/s and 2.335718×10‒9 m2/s respectively.


2011 ◽  
Vol 236-238 ◽  
pp. 2505-2509
Author(s):  
Xin Yi He ◽  
Jin Fu Liu ◽  
Li Li Cheng ◽  
Bu Jiang Wang

Drying characteristics of crispy winter jujube dried by explosion puffing drying at different vacuum drying temperature were investigated. Selection of the best model was examined by comparing the determination of coefficient (R2), root means square error (RMSE), and mean relative percentage error (P) between the experimental and predicted values. As expected, higher drying rates were obtained with higher vacuum drying temperature. The results showed that the Modified Henderson and Pabis model provided better simulation of drying curves for crispy winter jujube according to thin-layer drying theory. The effective moisture diffusivity of crispy winter jujube dried by explosion puffing drying with higher vacuum drying temperature was higher than the others.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 726
Author(s):  
Andrzej Bryś ◽  
Agnieszka Kaleta ◽  
Krzysztof Górnicki ◽  
Szymon Głowacki ◽  
Weronika Tulej ◽  
...  

Drying of spruce, beech, willow, and alder sawdust was examined in a laboratory type dryer. The effect of drying air temperature T (25, 60, and 80 °C) and airflow velocity v (0.01, 0.15, and 1.5 m/s) was investigated. The obtained results demonstrated that drying air temperature and airflow velocity have impacts on the drying of sawdust. The experimental dehydration data of sawdust obtained were fitted to theoretical, semi-theoretical, and empirical thin-layer models. The accuracies of the models were estimated using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ2). All models except the theoretical model of a sphere described the drying characteristics of sawdust satisfactorily. The effect of T and v on the parameters (constants and coefficients) of the drying models were determined. The effect, by the proposed equations, was also described. This work combines aspects of mechanical engineering and modelling of the drying process.


2021 ◽  
Vol 15 (2) ◽  
pp. 117-127
Author(s):  
O. S. Oyerinde ◽  
John A. V. Olumurewa ◽  
D. Fajobi

This is aimed at studying the aeration kinetics of catfish (Clarias gariepinus) smoked directly with biogas. Five live fresh fishes (Clarias gariepinus) were obtained from Fishery and Aquaculture Technology Department in FUTA, Ondo State, Nigeria at the age of 4 months with average weight of 900g each. The fishes were killed, de-gutted, thoroughly washed with water, cut into pieces of 3cm length. The chunks were laid in a single layer on a mesh directly exposed to biogas flame obtained from bio-decomposition of poultry waste and the weight was being monitored at 15 minutes interval until constant weight was observed. The study showed that the time taken for drying of Clarias gariepinus to reach the humidity point of around 12.43% (db.) was two and a half hours. The drying data was subjected to 10 thin-layer drying models. The compared the performances of the models using the determination of coefficient (R2), reduced chi­square (x2) and root mean square error (RMSE) between the calculated and predicted moisture ratios. The results showed that Henderson and Pabis modified model (highest R2 and lowest x2 and RMSE of 0.998, 0.00021 and 0.01386 respectively) was found to satisfactorily describe the biogas drying curves of Clarias gariepinus.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Akinjide A Akinola ◽  
Stanley N. Ezeorah

 This study aims to investigate the drying characteristics of cassava, yam, and potato slices using a laboratory scale batch Refractance Window™ (RW) dryer. The experimental dryer was constructed by modifying a laboratory water bath. The bath was covered with a transparent Polyethylene terephthalate (PET) plastic film held in-place with angled edges. The cassava, yam, and potato slices were dried on the Refractance WindowTM dryer, and the variation of the moisture content of the slices during the drying process was measured. The water temperature beneath the plastic film was maintained at 60oC. The dehydration data were fitted to thin-layer drying models. Regression analysis suggested that the Haghi and Ghanadzadeh model best describes the dehydration behaviour for the 3 mm thick slices for the cassava, yam, and potato tubers. The coefficient of determination (R2) values of 0.999, 0.998, and 0.998 for the cassava, yam, and potato slices respectively were reported in all the models studied. The drying curves, the drying rate curves, and the Krischer curves, from the experimental drying data, was plotted. Observations indicate that the cassava, yams, and potatoes slices dried to below 0.11 g water/g-solid moisture content in about 150 min. This study was performed to facilitate the understanding of the design, modelling, and operations of a continuously operating RW dryer. Keywords: Refractance Window Drying, Thin Layer Drying Models, Yams, Cassava, Potatoes.


2016 ◽  
Vol 18 (4) ◽  
pp. 65-70 ◽  
Author(s):  
Krzysztof Górnicki ◽  
Agnieszka Kaleta ◽  
Andrzej Bryś ◽  
Radosław Winiczenko

Abstract Drying behaviour of sawdust mixture was investigated in a convective dryer at 0.01 m/s and 25, 60, and 150°C air temperature. Sawdust mixture (60% of spruce and 40% of the second ingredient: beech, willow, ash, alder) and sawdust of spruce, beech, willow, alder and ash was used in the drying experiments. The sawdust mixture drying was affected by the drying of its ingredients. The experimental drying data were fitted to the theoretical, semi–theoretical, and empirical thin-layer models. The accuracies of the models were measured using the correlation coefficient, root mean square error, and reduced chi–square. All semi-theoretical and empirical models described the drying characteristics of sawdust mixture satisfactorily. The theoretical model of a sphere predicts the drying of sawdust mixture better than the theoretical model of an infinite plane. The effect of the composition of the sawdust mixture on the drying models parameters were also taken into account.


Sign in / Sign up

Export Citation Format

Share Document