Establishment of Process Capability of Machine Centre Driling Using Multiple Regression Analysis

2013 ◽  
Vol 465-466 ◽  
pp. 740-745
Author(s):  
M.A. Rahman ◽  
R.I.F. Elfi ◽  
Abu Bakar Baharudin ◽  
Ali Mokhtar Najib ◽  
Adi Saptari ◽  
...  

Assessment of process capability enables manufacturers to determine if a process produces products that meet customers expectation. Process capability can be beneficial in the long run in producing quality parts with minimum reject and optimum manufacturing cost. This paper proposes a procedure to assess process capability of a machining centers in drilling process using statistical analysis of machining parameters and machine rigidity. Experimental method used mild steel plate as work piece and carbide indexable cutting insert on drill of diameter 20mm. Cutting parameters such as cutting speed and feed rate were varied according to different cutting parameter level while wear in peripheral insert was inspected before and after each test run start. Machine rigidity in terms of vibration acceleration amplitude in x-, y-, and z-axis were measured and analyzed. Process capability index, Cpk of drilled hole accuracy was calculated. A regression model based on this experiment was established for predicting the process capability of machine tool in drilling operation. The established regression model is proven to have high accuracy, which is more than 80%. The validation test was carried out on a different machine tool with the same cutting conditions to check if different machine was adaptable to the regression model. This finding provides useful guidelines for machning operator to predict the process capability of the machine tool in the drilling process.

2013 ◽  
Vol 315 ◽  
pp. 749-754 ◽  
Author(s):  
M.A. Rahman ◽  
A.B. Baharudin ◽  
S. Adi ◽  
Nur Izan Syahriah Hussein ◽  
H. Isa ◽  
...  

Performance of machining processes is assessed by dimensional and geometrical accuracy which is mentioned in this paper as dimensional deviation. A part quality does not depend solely on the depth of cut, feed rate and cutting speed. Other variable such as excessive machine tool vibration due to insufficient dynamic rigidity can be deleterious to the desired results. The focus of the present study is to find a correlation between dimensional deviation against cutting parameters and machine tool vibration in dry turning. Hence cutting parameters and vibration-based regression model can be established for predicting the part dimensional deviation. Experiments are conducted using a Computerized Numerical Control (CNC) lathe with carbide insert cutting tool. Vibration data are collected through a data acquisition system, then tested and analyzed through statistical analysis. The analysis revealed that machine tool vibration has significant effect on dimensional deviation where statistical analysis of individual regression coefficients showed p<0.05. The developed regression model has been validated through experimental tests and found to be reliable to predict dimensional deviation.


2015 ◽  
Vol 761 ◽  
pp. 93-97
Author(s):  
M.A. Rahman ◽  
Nur Atiqah Md Sadan ◽  
Mohammad Minhat ◽  
Halim Isa ◽  
Abu Bakar Baharudin

Dimensional accuracy plays important criteria in producing high quality machined parts. This is a big challenge to manufacturers of precision components to produce good quality parts with minimum manufacturing error. The focus of this paper is to study the influence of the machine tool rigidity and cutting parameters on dimensional accuracy in turning operation. A method was prepared for identifying the factors effecting dimensional accuracy in a turning process. Experimental setup involved computerized numerical control (CNC) lathe machine, with VBMT 160404 carbide insert and mild steel, as cutting tool and workpiece respectively. The statistical analysis was used for analyzing and determining the accuracy of experimental data through Minitab statistical software. The regressions model was developed. The developed regression model could be used to predict the dimensional precision of the parts based on machine tool vibration and machining parameters during turning process. This is the aspect to be seriously considered and be applied in attaining sustainable machine tool development during design and development stage and its usage. This finding provides useful guidelines for manufacturers to produce high quality machined parts at minimum manufacturing cost. It was found that the cutting speed, feed rate, final part length, vibration x and vibration z have significant effects on dimensional accuracy of the machined parts.


2020 ◽  
Vol 3 (1) ◽  
pp. 474-481
Author(s):  
Mohammad Rafighi

In this study, the effects of machining parameters, namely feed rate, cutting speed and depth of cut on the surface roughness was investigated experimentally in hard turning of AISI 52100 bearing steel using cubic boron nitride insert under dry cutting condition. Taguchi method was utilized to reduce the number of trials to 9 for saving the time and manufacturing cost. The significant factor on the surface roughness was determined using analysis of variance. Furthermore, the optimum cutting parameter for reducing the surface roughness was obtained. The findings showed that the feed rate has the highest impact on surface roughness among any other cutting parameters, with 88.32% contribution.


2020 ◽  
pp. 002199832095774
Author(s):  
Eduardo Pires Bonhin ◽  
Sarah David-Müzel ◽  
Manoel Cléber de Sampaio Alves ◽  
Edson Cocchieri Botelho ◽  
Marcos Valério Ribeiro

The use of fiber metal laminates (FML) in aeronautics components has been increased in the last years, mainly due to the gain in mechanical properties combined with low specific mass. However, in the assembly of these materials on the structures to which they will be attached, mechanical screwing is still the main method used, which requires the performance of drilling processes. Something it is very complicated for these materials and can cause damage that compromises the performance. Therefore, this work aims to approach and summarize the evolution of the mechanical drilling process on FML developed in the last years. By the work, the main problems that occur during the drilling of these materials are punctually approached, such as delamination, burr formation, dimensional error, poor roughness, and tool wear. In addition, it is presented how these problems are affected by the machining parameters (cutting parameters, geometry, material/coating tool, and cutting environment), as well as suggestions for minimizing process problems. Thus, the article intends to provide as much information as possible available in the literature, seeking to help researchers gain a comprehensive view of the mechanical drilling of fiber metal laminates.


2019 ◽  
Vol 287 ◽  
pp. 30-34
Author(s):  
Zwelinzima Mkoko ◽  
Khaled Abou-El-Hossein

In the globally competitive environment, surface roughness and finer tolerances are becoming stringent and certainly most critical for optical components. The aim of this study is to determine the effects of diamond turning process parameters on surface finish when diamond turning RSA 443 alloy having high silicon content. This alloy is a new grade of aluminum that has a potential to be used for production of various optical components. The experiments were conducted based on the Box-Behnken design with three diamond-turning parameters varied at three levels. A mathematical regression model was developed for predicting surface roughness. Further, the analysis of variance was used to analyze the influence of cutting parameters and their interaction in machining. The developed prediction model reveals that cutting speed and feed rate are the most dominant diamond turning factors influencing surface roughness.


2013 ◽  
Vol 393 ◽  
pp. 194-199 ◽  
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Noor Hawa B. Mohamad Rasdi ◽  
Khairus Syakirah B. Mahmud ◽  
Abdul Hakam B. Ibrahim ◽  
...  

Thermal or heat assisted machining is used to machine hard and difficult-to-machine materials such as Inconel and Titanium alloys. The main concept is that localized surface heating of the work-piece reduces the yield strength of the material significantly, making it amenable to plastic deformation and machining. Thus, heat assisted machining has been used for over a century. However, the heating technique and temperature are very much dependent on the type of working material. Therefore, a multitude of heating techniques has been applied over the years including Laser Assisted Machining (LAM) and Plasma Enhanced Machining (PEM) in the industry. But such processes are very expensive and have not been found in wide scale applications. The authors of the current research have therefore looked into the application of a simple Tungsten Inert Gas (TIG) welding setup to perform heat assisted turning of AISI 304 Stainless Steel. Such welding equipment is relatively cheap and available. Also, stainless steel is perennially used in the industry for high strength applications. Hence, it is very important to determine with optimal cutting temperature when applying a TIG setup for heat assisted machining of stainless steel. This paper describes three separate techniques for determining the optimum temperature. All three processes applied the same experimental setup but used different variables for evaluating the best temperature. The first process used vibration amplitude reduction with increment in temperature to identify the desired temperature. The second process used chip shrinkage coefficient to locate the same temperature. And finally, the third process investigated tool wear as a criterion for determining the optimum temperature. In all three cases the three primary cutting parameters: cutting speed, feed, and depth of cut, were varied in the same pattern. The results obtained from all three approaches showed that 450oC was undoubtedly the best temperature for heat assisted machining of stainless steel.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2070 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Mariusz Kłonica ◽  
Jakub Matuszak

This paper set out to investigate the effect of cutting speed vc and trochoidal step str modification on selected machinability parameters (the cutting force components and vibration). In addition, for a more detailed analysis, selected surface roughness parameters were investigated. The research was carried out for two grades of magnesium alloys—AZ91D and AZ31—and aimed to determine stable machining parameters and to investigate the dynamics of the milling process, i.e., the resulting change in the cutting force components and in vibration. The tests were performed for the specified range of cutting parameters: vc = 400–1200 m/min and str = 5–30%. The results demonstrate a significant effect of cutting data modification on the parameter under scrutiny—the increase in vc resulted in the reduction of the cutting force components and the displacement and level of vibration recorded in tests. Selected cutting parameters were modelled by means of Statistica Artificial Neural Networks (Radial Basis Function and Multilayered Perceptron), which, furthermore, confirmed the suitability of neural networks as a tool for prediction of the cutting force and vibration in milling of magnesium alloys.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Adel Al-Shayea ◽  
Fawaz M. Abdullah ◽  
Mohammed A. Noman ◽  
Husam Kaid ◽  
Emad Abouel Nasr

The turning, which consists of the removal of metal from the outer diameter of a rotating cylindrical workpiece, is one of the most common techniques for cutting, especially when finishing the product. The values of the cutting parameters, such as feed rate, cutting speed, and depth of cut, in a turning operation must be selected carefully to improve the profit of operations by enhancing productivity and reducing the total manufacturing cost for each component. A high vibration leads to poor surface finish and reduced productivity and shortens the tool life; therefore, this parameter should be controlled. In this study, an experiment is conducted to investigate the effects of these cutting parameters in the turning process of a workpiece, composed of AISI 1040 steel, using the response surface method. Statistical tools were used to design the experiments. These parameters are optimized by using analysis of variance, regression, and optimization techniques to achieve the condition of minimum vibration and chip frequency, therefore improving the surface roughness after the turning process.


2015 ◽  
Vol 787 ◽  
pp. 460-464 ◽  
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
P. Kuppan

Inconel 718, a nickel based alloys, addressed as difficult to cut material because of hard carbide particle, hardness, work hardening and low thermal conductivity. Improving the machinability characteristics of nickel based alloys is a major anxiety in aircraft, space vehicle and other manufacturing fields. This paper presents an experimental investigation in Laser assisted turning of Inconel 718 to determine the effects of laser cutting parameters on cutting temperature and cutting forces. This nickel alloy has a material hardness at 48 HRC and machined with TICN/Al2O3/TiN tool. This is employed for the manufacture of helicopter rotor blades and cryogenic storage tanks. The experiments were conducted at One-Factor-at-a-Time.The effects of laser cutting parameters, namely cutting speed, feed rate, laser power and laser to work piece angle, on the cutting temperature and cutting force components, are critically analysed and the results are compared with unassisted machining of this alloy. The experiments are conducted by varying the cutting speed at three levels (50, 75, 100 m/min), feed rate (0.05, 0.075 0.1 mm/rev), laser power (1.25 kW, 1.5 kW, 1.75 kW) and at two level laser to work piece angle (60, 75°). At the optimal parametric combinationof laser power 1.5 kW with cutting speed of 75m/min, feed rate of 0.075 mm/min and laser to work piece angle 60°, the benefit of LAM was shown by 18%, 25% and 24% decrease in feed force (Fx), thrust force (Fy) and cutting force (Fz) as compared to those of the conventional machining. Examination of the machined surface hardness profiles showed no change under LAM and conventional machining.


Sign in / Sign up

Export Citation Format

Share Document