Improvement of Fire Retardant Property of Natural Fiber

2013 ◽  
Vol 471 ◽  
pp. 261-266
Author(s):  
Sim Yeng Peng ◽  
Sin Yi Wen ◽  
Pang Zong Xin ◽  
Sharmini Jegachandra ◽  
Mohammad Hosseini Fouladi ◽  
...  

Excessive exposure to noise is harmful for human health. Noise-induced hearing loss is one prevalent disorder resulted from above case. One root solution that converts the unnecessary sound waves to dissipated heat energy is acoustic absorption panel. Previous studies had looked upon potential sound-absorbing resources corresponding to natural fiber. However, several characteristics of these biodegradable supplies such as stiffness, anti-fungus and flammability are still yet to be improved. Hence, this research was undertaken to enhance the fire retardant performance of coir fiber for the production of high quality yet low cost acoustic absorption panel. Three types of additives, borax, Di-Ammonium Phosphate (DAP), and urea were investigated to perform chemical treatment for coir fiber. Experimental measurements were executed to validate the results by referring standard of ASTM E6902 (Standard Test Method for Combustible Properties of Treated Wood) by using the Fire-Tube Apparatus. Final results showed that DAP-treated fiber has the lowest percentage loss in mass of 6.67% compared to that of borax and urea-treated fiber with values of 7.60% and 9.48% respectively. This outcome clarified that DAP-treated fiber possesses higher self-extinguishing ability. Further evaluations in term of economic values, degree of hazards against health, flammability as well as reactivity supported that DAP is the best choice since its potency was ahead of the other two chemicals.

2011 ◽  
Vol 471-472 ◽  
pp. 640-645 ◽  
Author(s):  
Mohd Rashid Yusof Hamid ◽  
Ahmad Haji Sahrim

Recently, research on natural fiber reinforced polymer composites has gained importance due to the abundant sources of fibers that can be obtained at very low cost. In this study, wood plastic composite (WPC) materials is made by mixing (compounding) high density polyethylene (HDPE) and (ligno) cellulose fiber, i.e. rice husk reinforced with sawdust have been manufactured using a high volume process using counter rotating twin screw extruder. Different fire retardant agents have been employed in order to improve fire behavior in this study. The flammability and thermal stability of WPC-HDPE based in different compositions have been carried out by fire test method according to ASTM D635-06 and evaluated by thermo gravimetric analysis respectively. The properties of flexural strength and impact strength were also included.


2015 ◽  
Vol 668 ◽  
pp. 137-144
Author(s):  
Mario Villalón ◽  
Hugo Vega ◽  
Nahary Montoya ◽  
Byron Rubio ◽  
Julio Hernandez ◽  
...  

The use of natural fibers has a great interest due to their damping properties, low density and moderate strength. The effect of incorporating chopped natural fibers, as disperse reinforced phase, on the dynamic or quasi-static elastic modulus of glass fiber laminates is presented. Squares of 32 cm2 plain wave glass fiber prepreg with epoxy resin were used in a stacking sequence [0]4. Short length chopped (1-3 mm) natural coir fiber was placed in between of each glass fiber prepreg sheet (4) and laminates were prepared by the vacuum bag technique. The volume fraction of natural fiber was 30% (mass fraction of 10%) and samples of 254 mm length and 25.4 mm width were cut and tested at vibration conditions in a cantilever beam arrangement. The vibration frequency was measured by an accelerometer ADXL335 at z-axis, perpendicular to the sample test plane and the elastic modulus was estimated with the cantilever model. The results showed that the samples with coir fiber showed an increase in the dynamic elastic modulus value of 150 to 171% with regard to that one of glass fiber samples without fiber. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (ASTM D3039) was also used to further characterize the thin samples (≈0.75 mm) with an Instron machine 8800, 25kN. The tensile properties obtained are lower for coir fiber samples than the ones without.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1282
Author(s):  
M.J. Suriani ◽  
Fathin Sakinah Mohd Radzi ◽  
R.A. Ilyas ◽  
Michal Petrů ◽  
S.M. Sapuan ◽  
...  

Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4094
Author(s):  
Imran Ali ◽  
Nam Kyeun Kim ◽  
Debes Bhattacharyya

The integration of intumescent flame-retardant (IFR) additives in natural fiber-based polymer composites enhances the fire-retardant properties, but it generally has a detrimental effect on the mechanical properties, such as tensile and flexural strengths. In this work, the feasibility of graphene as a reinforcement additive and as an effective synergist for IFR-based flax-polypropylene (PP) composites was investigated. Noticeable improvements in tensile and flexural properties were achieved with the addition of graphene nanoplatelets (GNP) in the composites. Furthermore, better char-forming ability of GNP in combination with IFR was observed, suppressing HRR curves and thus, lowering the total heat release (THR). Thermogravimetric analysis (TGA) detected a reduction in the decomposition rate due to strong interfacial bonding between GNP and PP, whereas the maximum decomposition rate was observed to occur at a higher temperature. The saturation point for the IFR additive along with GNP has also been highlighted in this study. A safe and effective method of graphene encapsulation within PP using the fume-hood set-up was achieved. Finally, the effect of flame retardant on the flax–PP composite has been simulated using Fire Dynamics Simulator.


2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1102
Author(s):  
Cristian Bolaño ◽  
Sabrina Palanti ◽  
Luigi Benni ◽  
Diego Moldes

Several treatments of wood, based on laccase assisted grafting, were evaluated in this paper. Firstly, the efficacy of lignosulfonate and kraft lignin from Eucalyptus spp. as a wood preservative was assessed. Both ligno products were anchored to wood surfaces via laccase treatment in order to avoid leaching. Moreover, some of these wood preservative treatments were completed with the addition of silver nanoparticles. For comparison, a commercial product was also analyzed in terms of its fungal decay resistance during surface application, in accordance to use class 3, CEN EN 335. Secondly, the anchoring of a flame retardant based on tetrabromobisphenol-A (TBBPA) was attempted, to limit the dispersion of this toxic substance from treated wood. In both cases, kraft lignin and lignosulfonate showed an improvement in wood durability, even after leaching. However, the addition of silver nanoparticles did not improve the efficacy. On the other hand, the efficacy of TBBPA as a flame retardant was not improved by grafting it with laccase treatment or by adding O2, a co-factor of laccase.


Sign in / Sign up

Export Citation Format

Share Document