Adaptable Product Platform-Based Product Family Design of Crane

2013 ◽  
Vol 475-476 ◽  
pp. 1402-1405
Author(s):  
Xian Fu Cheng ◽  
Qi Hang Zhu

A new design method for product family was presented based on adaptable product platform. Firstly, customer demands were analyzed for bridge crane. Secondly, axiomatic design was utilized as framework to zigzaging mapping between functional requirements and design parameters, and design matrix was established. Then the sensitivity analysis among design parameters and between design parameters and functional requirements was done. The design relation matrix was established and relation degree among design parameters was calculated. Based on above analysis, the platform parameters were identified.

Author(s):  
Chad Hume ◽  
David W. Rosen

Product family design strategies based on a common core platform have emerged as an efficient and effective means of providing product variety. The main goal in product platform design is to maximize internal commonality within the family while managing the inherent loss in product performance. Therefore, identification and selection of platform variables is a key aspect when designing a family of products. Based on previous research, the Product Platform Constructal Theory Method (PPCTM) provides a systematic approach for developing customizable products, while allowing for multiple levels of commonality, multiple product specifications, and balancing the tradeoffs between commonality and performance. However, selection of platform variables and the modes for managing product variety are not guided by a systematic process in this method. When developing a platform with more than a few variables, a quantitative method is needed for selecting the optimal platform variable hierarchy. In this paper we present an augmented PPCTM which includes sensitivity analysis of platform variables, such that hierarchical rank is conducted based on the impact of the variables on the product performance. This method is applied to the design of a line of customizable finger pumps.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


Author(s):  
Patrik Boart ◽  
Ola Isaksson

Currently, mechanical design of aero engine structural components is defined by dimensioning of Design Parameters (DP's) to meet Functional Requirements (FR's). FR's are typically loads, geometrical interfaces and other boundary conditions. Parameters from downstream processes are seldom actually seen as DP's. This paper proposes that downstream process parameters are treated as DP's which calls for engineering methods that can define and evaluate these extended set of DP's. Using the proposed approach manufacturing process alternatives can be used as DP's in early stages of product development. Both the capability to quantitatively assess impact of varying manufacturing DP's, and the availability of these design methods are needed to succeed as an early phase design method. One bottleneck is the preparation time to define and generate these advanced simulation models. This paper presents how these manufacturing process simulations can be made available by automating the weld simulation preparation stages of the engineering work. The approach is based on a modular approach where the methods are defined with knowledge based engineering techniques-operating close to the CAD system. Each method can be reused and used independently of each other and adopted to new geometries. A key advantage is the extended applicability to new products, which comes with a new set of DP's. On a local level the lead time to generate such manufacturing simulation models is reduced with more than 99% allowing manufacturing process alternatives to be used as DP's in early stages of product development.


2012 ◽  
Vol 452-453 ◽  
pp. 516-520
Author(s):  
Yan Ling Cai ◽  
Zhen Hua Cui

Product platform design is essentially a difficult decision to make, thus a hierarchic platform has been proposed to solve the inherent tradeoff for optimization. However, architecture coupling adds on complexity of the platform design. This paper proposes an improved cost model for the optimal design of platform design in the hierarchic manner with the consideration of the architecture coupling. This cost model uniquely treats the architecture couplings and their decoupling interfaces as latent cost drivers to enable the flexible design of product platform and its family. As a support, the underlying tradeoff mechanism of platform-based product family design is also analyzed in this paper.


Author(s):  
Raviraj U. Nayak ◽  
Wei Chen ◽  
Timothy W. Simpson

Abstract In recent years, considerable research has been directed towards the development of methods for designing families of products. In this paper, we present a Variation-Based Platform Design Methodology (VBPDM), which aims to satisfy a range of performance requirements using the smallest variation of the product designs in the family. In the first stage of the VBPDM, the common product platform around which the product family is to be developed is identified. A ranged set of solutions is found, represented by the mean and standard deviation of the input design variables, to meet a range of the different performance requirements for the product family. During this first stage, a compromise Decision Support Problem (DSP) is used to optimize the commonality goal that seeks to minimize the deviation of the input design variables, while satisfying the range of performance requirements. Those design variables that show small deviations are held constant to form the product platform. In the second stage of the VBPDM, each individual product is designed around the common platform such that the functional requirements of the product are best satisfied. As an example, the proposed method is used to develop a family of universal electric motors designed to meet a range of torque requirements. The results are compared against previous work.


Author(s):  
Zhihuang Dai ◽  
Michael J. Scott

Product platform design plays a vital role in determining two important aspects of a products family: efficiency (cost savings due to commonality) and effectiveness (capability to satisfy performance requirements). In this work, sensitivity analysis and cluster analysis are used to improve both efficiency and effectiveness of a product family design. A strategy of commonization is employed to form a platform. An illustrative example is used to demonstrate the merits of the proposed method, and the results are compared with existing results from the literature.


Author(s):  
Rupesh Kumar ◽  
Venkat Allada

Product platform formation has long been considered as an effective method to meet challenges set forth by mass customization. To cater to the changes in customer need driven functional requirements and technological advancements, product platforms have to be robust for a given planning horizon from the manufacturer’s point of view. To date, most of the product platform research is directed towards developing approaches that maximize the usage of common physical structures (such as sub-assemblies and components), amongst product variants. We argue that there is a need to start thinking about platforms at a higher level of abstraction than just at the physical structure level because after all, the physical structures are the end result of the mapping process that starts with the customer needs, cascades to the functional requirements and the behaviors (aka working principle/behavior) that will be used to realize the functions. The Function-Behavior-Structure approach discussed by Gero and Kannengiesser (2003) deals with such an approach. In this paper, we present a methodology called the Function-Behavior Ant Colony Optimization (FB-ACO), to determine a higher abstract level platform at the FB level. The proposed approach can be used to provide critical decisions related to the planning of the advent and egress of a product or the use of a behavior, configuration of the function-behavior platform and the number of such platforms to be considered at a particular time. The FB platform can then be used to develop the detailed design for the family of products under consideration. We demonstrate our proposed approach using the example of a computer mouse product family.


2019 ◽  
Vol 301 ◽  
pp. 00011
Author(s):  
Chu-Yi Wang ◽  
Ang Liu ◽  
Stephen Lu

Because parametric values are unknown during initial concept generation, the Axiomatic Design Theory uses the binary design matrix (DM) to represent the coupling relationship between functional requirements and design parameters. However, given an existing product, it would be possible to employ the numerical DM that has more detailed information than the binary DM to help improve the design concept. This paper proposed a two-phase method to create a numerical DM in phase I and manage the functional couplings in phase II for concept improvement of existing product. A decomposition-definition-levelling framework and the Puritan-Bennett’s 0-1-3-9 level rating are employed to evaluate the system impact of each functional coupling to create the numerical DM of an existing design concept. The Design Coupling Sequence (DCS) approach was extended to use the numerical DM to improve this design concept. Compared with other numerical matrices for product development and the structured approach by Su et al., our method is more generic and faster, providing useful details yet still able to maintain the dominance of the high-level couplings.


Sign in / Sign up

Export Citation Format

Share Document