The Simulation and Experiment Study on the Gas Flow in the No-Loaded and Cold Vacuum High-Pressure Gas Quenching Furnace

2011 ◽  
Vol 48-49 ◽  
pp. 1310-1314
Author(s):  
Zhi Jian Wang ◽  
Xiao Feng Shang

In order to learn gas flow state in the vacuum high pressure gas quenching furnace, this paper simulates and tests the gas flow under the no-loaded and cold state. Hot wire anemometer is used to measure the speeds of some feature points, on the one hand to provide boundary conditions for the numerical simulation, and on the other hand to compare with the numerical simulation results. FLUENT software is used to simulate the gas flow of nozzle-type vacuum high-pressure gas quenching furnace. The results show that at the center of the furnace appears high-pressure low-speed zone in which is resulted by the gas collision there, and the vortex also appears in the area around the furnace. The results mean that the cooling rate of works will be slow there. Different exit velocities of five nozzles cause the uneven flow distribution, which will affect the cooling uniformity of works. The comparison between the simulation results and the measured results shows that the error is within 10%. It means that numerical simulation method to predict gas flow is feasible and the results are reliable in high pressure gas quenching furnace.

2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1053
Author(s):  
Chengmin Chen ◽  
Guangxia Liu ◽  
Lei Zhang ◽  
Guodong Wang ◽  
Yanjin Hou ◽  
...  

In this paper, a transient numerical simulation method is used to investigate the effects of the two furnace configurations on the thermal field: the shape of the melt–crystal (M/C) interface and the thermal stress in the growing multicrystalline ingot. First, four different power ratios (top power to side power) are investigated, and then three positions (i.e., the vertical, angled, and horizontal positions) of the insulation block are compared with the conventional setup. The power ratio simulation results show that with a descending power ratio, the M/C interface becomes flatter and the thermal stress in the solidified ingot is lower. In our cases, a power ratio of 1:3–1:4 is more feasible for high-quality ingot. The block’s position simulation results indicate that the horizontal block can more effectively reduce the radial temperature gradient, resulting in a flatter M/C interface and lower thermal stress.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012028
Author(s):  
Mingming Liu ◽  
Haifei Zhuang ◽  
Lei Cao

Abstract In order to reveal the dredge pump flow instability characteristics, the cavitation and pressure fluctuation in experimental study are carried out, the pressure fluctuation frequency domain and time domain characteristics of three different position inside the volute are analyzed. The results showed that, before cavitation, the main frequency at different positions at different flow rates is 1 times the main frequency of the blade. The fluctuation amplitude near the volute tongue and diffusion section is slightly larger than that at other positions. Before cavitation, the fluctuation amplitude at the same position off design flow is slightly higher than that near the design flow. Cavitation has little influence on the main frequency of the pressure fluctuation. After cavitation, the pressure fluctuation amplitude in the low flow point and the position of the volute tongue under each condition has little change, but cavitation aggravates the pressure fluctuation in the other conditions. Besides, the comparison between simulation and experiment results shows the dredge pump performance curve is in good agreement with the simulation curve, and the simulation results of pressure amplitude at different positions are basically consistent with the experiment results, which verifies the reliability of the numerical simulation method.


2011 ◽  
Vol 308-310 ◽  
pp. 189-192
Author(s):  
Long Xing Chen ◽  
Wen Qi Ma ◽  
He Chun Yu ◽  
Hai Yan Liu ◽  
Hong Wang Du

The aerostatic circular thrust bearing was taken as a study subject. The numerical simulation method was used to calculate the flow passage. Meanwhile, the single-point testing method was used to test the pressure distribution. The simulation and experiment measurement results were compared and analyzed. The results show that: The single-point testing method is effective to capture the change of flow characteristics. The overall results of simulation and testing coincide with each other well. In the range of cone cavity, the flow pattern for the gas is turbulent flow, and the flow field should be divided into different zones for simulation.


Author(s):  
Alexander Khair ◽  
Bingen Yang

Abstract In this paper, a mathematical model of a double beam structure carrying a high-pressure driven projectile is developed for investigation of the physical behaviors of gun barrels during firing. The dynamic response of such a weapon system is particularly interesting when reduction of muzzle vibrations and relevant dynamic stress in the structure is needed to improve the life cycle of the gun. In the model presented, the Timoshenko beam theory is implemented, and realistic characteristics of the physical system are considered. Numerical simulation results are presented for the displacement and rotation of the two beams, and the rigid-body projectile mass.


Author(s):  
Z. Z. Kang ◽  
B. M. Sun ◽  
Y. H. Guo ◽  
W. Zhang ◽  
H. Q. Wei

Numerical simulation method is employed in this article to investigate various high-temperature air direct-ignition processes of pulverized coal (PC). Several important factors are analyzed, which are the inlet velocity of primary air flow, PC concentration and the velocity and temperature of high temperature air. The flow, combustion and heat transfer in high temperature air oil-free ignition burner can also be obtained from the simulation results, which are in accordance with the experimental data. The research provides guidance for structure improvement and operation optimization of burner.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


1994 ◽  
Vol 37 (4) ◽  
pp. 21-27
Author(s):  
Guoping Xie ◽  
Yoshihide Suwa

Uniformity of airflow distribution in a unidirectional flow cleanroom has been studied experimentally and numerically. The influence of the height of the plenum chamber and the velocity of airflow introduced into the chamber on the airflow uniformity are investigated experimentally. In addition, a numerical simulation method to predict airflow uniformity is proposed, taking into account the characteristics of the pressure loss of the filter. The calculation domain in this study includes not only the cleanroom but also the plenum chamber and the exhaust chamber. The validity of the numerical method is also verified by comparing the simulation results with the experiments. Finally, the numerical method is used to obtain an appropriate height for the plenum chamber.


2012 ◽  
Vol 217-219 ◽  
pp. 1460-1464 ◽  
Author(s):  
Jing Xie ◽  
Yi Tang ◽  
Jin Feng Wang ◽  
Chen Miao ◽  
Yong Yan Lin

On the basis of previous work, the simulation condition of cold store was improved to reduce calculation error. The SIMPLE algorithm and Boussineq assumption were used and the turbulent intensity was also set. The numerical simulation results reflected that the temperature distribution was closer to the previous experimental results after using new method. The error between simulation values and experimental values was decreased. The simulation result showed that temperature of corner was highest in the cold store. The temperature change of the cold store in the cooling process could be better predicted by using modified simulation method and the accuracy of numerical simulation of cold store in the cooling process could also be validated.


Sign in / Sign up

Export Citation Format

Share Document