Tribological Properties of the ZrN Coatings by DC Magnetron Sputtering

2014 ◽  
Vol 487 ◽  
pp. 67-70
Author(s):  
Chien Cheng Liu ◽  
Kuang I Liu ◽  
Hao Tung Lin ◽  
Yung Chih Chou ◽  
Yung Mao Cheng ◽  
...  

ZrN thin films were successfully deposited by DC magnetron sputtering on die steel substrates. The objective of this study was to investigate heat treatment on the microstructure, morphology, nanohardness properties determined by X-ray diffraction, field-emission scanning electron microscope (FE-SEM), nanoindentation, and pin-on-disk, respectively. The XRD result shows that ZrN has intensity of (111) and (200) peak after 400 °C for 1 h at lower nitrogen flow rates. The surface of coatings revealed smaller grains and smooth surface under heat treatment. ZrN coatings consisted of lower nitrogen flow rate had much lower friction coefficient, better mechanical properties by annealing treatment process.

2013 ◽  
Vol 440 ◽  
pp. 9-12
Author(s):  
Chien Cheng Liu ◽  
Kuang I Liu ◽  
Yung Chih Chou ◽  
Yung Mao Cheng ◽  
Chih Lung Lin

ZrN films were prepared by magnetron sputtering on die steel substrates. The objective of this study was to investigate the effect of nitrogen flow rate on the microstructure ,morphology, nanohardness properties determined by X-ray diffraction, field-emission scanning electron microscope, nanoindentation, and pin-on-disk, respectively. The XRD shows that ZrN has (111) and (200) preferred orientation under lower nitrogen flow rates. The surface of coatings revealed smaller grains and uniform dense under lower nitrogen flow rates. With increasing the nitrogen flow rates, this result showed ZrN films lead to poor mechanical properties and hardness values. However, films consisted of up high ernitrogen flow rate had much lower friction coefficient.


2012 ◽  
Vol 476-478 ◽  
pp. 2571-2574
Author(s):  
Chien Cheng Liu ◽  
Kuang I Liu ◽  
Hao Tung Lin ◽  
Yung Mao Cheng

Multilayers of CrN/Si3N4 coatings were prepared by magnetron sputtering on die steel substrates. The layers of CrN/Si3N4 films were varied to investigate their effects on microstructure, morphology, nano-hardness properties determined by X-ray diffraction, field-emission scanning electron microscope (FE-SEM), nanoindentation, and pin-on-disk, respectively. The result shows that CrN has highly (111) preferred orientation and Si3N4 exhibits amorphous phase at working temperature of 200 oC. The surface of coatings revealed smaller grains and uniform dense with higher layers. The number of layers increased with enhancing of the mechanical properties, and hardness values. At 64 layers films had the largest nano-hardness. Besides, the highest layers of CrN/Si3N4 multilayers have been achieved the lowest friction coefficient for against steel ball.


2015 ◽  
Vol 754-755 ◽  
pp. 591-594
Author(s):  
Haslinda Abdul Hamid ◽  
M.N. Abdul Hadi

The codoped ZnO thin film were deposited by DC magnetron sputtering on silicon (111) followed by annealing treatment at 200 °C and 600 °C for 1 hour in nitrogen and oxygen gas mixture. Structural investigation was carried out by scanning electron microscopy (SEM), atomic force microscopy and x-ray diffraction (XRD). Film roughness and grain shape were found to be correlated with the annealing temperatures.


2022 ◽  
Vol 1048 ◽  
pp. 158-163
Author(s):  
Mekala Lavanya ◽  
Srirangam Sunita Ratnam ◽  
Thota Subba Rao

Ti doped Cu2O thin films were prepared at distinct Argon/Oxygen gas flow ratio of 34/1, 33/2,32/3 and 31/4 with net flow (Ar+O2) of 35 sccm by using DC magnetron sputtering system on glass substrates at room temperature. The gas mixture influence on the film properties studied by using X-ray diffraction, Field emission scanning electron microscopy and UV-Visible spectroscopy. From XRD results, it is evident that, with a decrease in oxygen content, the amplitude of (111) peak increased, peak at a 35.67o scattering angle and the films shows a simple cubic structure. The FESEM images indicated the granularity of thin films was distributed uniformly in a homogenous model and also includes especially pores and cracks. The film deposited at 31/4 showed a 98% higher transmittance in the visible region.


2013 ◽  
Vol 594-595 ◽  
pp. 958-961
Author(s):  
Haslinda Abdul Hamid ◽  
Hooi Min Yee ◽  
Mohd Nasir Abdul Hadi

The codoped ZnO thin film were deposited by DC magnetron sputtering on silicon (111) followed by annealing treatment at 400 °C and 600 °C for 1 hour in nitrogen and oxygen gas mixture. Structural investigation was carried out by scanning electron microscopy (SEM) and X ray diffraction (XRD). Film roughness (r.m.s) and grain shape were found to be correlated with the annealing temperatures. SEM result has shown that its surface characteristics are strongly influenced by annealing temperatures.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 265
Author(s):  
Chun-Liang Chen ◽  
Sutrisna

Refractory high-entropy alloy (RHEA) is one of the most promising materials for use in high-temperature structural materials. In this study, the WMoNbTaV coatings on 304 stainless steel substrates has been prepared by mechanical alloying (MA). Effects of V addition and subsequent heat treatment on properties of the WMoNbTaV coatings were investigated. The results show that the RHEA coatings with nanocrystalline body-centered cubic (BCC) solid-solution phase were generated by the mechanical alloying process. The presence of the V element promotes a uniform microstructure and homogeneous distribution of composition in the RHEA coatings due to improving alloying efficiency, resulting in an increase of hardness. After the annealing treatment of the RHEA coatings, microstructure homogeneity was further enhanced; however, the high affinity of Ta for oxygen causes the formation of Ta-rich oxides. Annealing also removes strain hardening generated by high-energy ball milling and thus decreases the hardness of the RHEA coating and alters microstructure evolution and mechanical properties.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


2010 ◽  
Vol 66 ◽  
pp. 35-40 ◽  
Author(s):  
Erdem Baskurt ◽  
Tolga Tavşanoğlu ◽  
Yücel Onüralp

SiC films were deposited by reactive DC magnetron sputtering of high purity (99.999%) Si target. 3 types of substrates, AISI M2 grade high speed steel, glass and Si (100) wafer were used in each deposition. The effect of different CH4 flow rates on the microstructural properties and surface morphologies were characterized by cross-sectional FE-SEM (Field-Emission Scanning Electron Microscope) observations. SIMS (Secondary Ion Mass Spectrometer) depth profile analysis showed that the elemental film composition was constant over the whole film depth. XRD (X-Ray Diffraction) results indicated that films were amorphous. Nanomechanical properties of SiC films were also investigated.


2014 ◽  
Vol 998-999 ◽  
pp. 120-123
Author(s):  
Jun Du ◽  
Xiao Ying Zhu ◽  
Yan Zang ◽  
Lei Guo

sp2 rich carbon films were produced by using magnetron sputtering deposition. The hardness, friction coefficient and wear volume were elevated by Knoop micro-hardness and pin-on-disk tester; The composition and microstructure of the carbon films have been characterized in detail by combining the techniques of Rutherford Backscattering Spectrum (RBS), X-Ray Photoelectron Spectrum (XPS) and X-Ray Diffraction (XRD); the electrical resistivity was measured by Four Probe Methods (FPM). It is found that: the films hardness are 11~17GPa (HK0.05), the friction coefficients are 0.1-0.2, the wear rate is 10-15m3/Nm; The maximum intensity position in the C1s indicates the chemical bonds are mainly sp2; the electrical resistivity is 1~2×10-4Ω·m. XRD proves these carbon films are amorphous.


2019 ◽  
Vol 34 (4) ◽  
pp. 386-394
Author(s):  
王效坤 WANG Xiao-kun ◽  
朴祥秀 PIAO Xiang-xiu ◽  
孟 雷 MENG Lei ◽  
房伟华 FANG Wei-hua ◽  
刘 飞 LIU Fei

Sign in / Sign up

Export Citation Format

Share Document