Thermal and Stability Analysis of Formed Platelet in Platelet Transpiration Cooling

2011 ◽  
Vol 52-54 ◽  
pp. 859-864 ◽  
Author(s):  
Yong Fa Hou ◽  
Wei Qiang Liu

Platelet transpiration cooling is one of the key techniques for the developing reusable launch vehicle. The thinner of the platelet, the better effect plate transpiration will gain. Meanwhile, the platelet unit may get wrinkled if thermal stress is large enough. One-dimensional non-equilibrium model is adopted to analyze the heat transfer characteristics of platelet transpiration cooling. The assumption of rectangular plate with three-side simple supported and one-side free is taken and Galerkin method is applied for analyzing the stability of platelet unit. Analysis indicates that as the heat transfer intensity increases, the thermal soaking depth decreases, while more coolant is needed to keep the heated wall at design temperature. Also, the critical thickness for the platelet not to get wrinkled gets larger with the increasing thermal soaking depth.

1989 ◽  
Vol 202 ◽  
pp. 83-96 ◽  
Author(s):  
C. Nicoli ◽  
P. Pelcé

We develop a simple model in which longitudinal, compressible, unsteady heat transfer between heater and gas is computed in the small-Mach-number limit. This calculation is used to determine the transfer function of the heater, which plays an important role in the stability limits of the thermoacoustic instability of the Rijke tube. The transfer function is determined analytically in the limit of small expansion parameter γ, and numerically for γ of order unity. In the case ρμ/cp = constant, an analytical solution can be found.


Author(s):  
Deepak Khurana ◽  
Sudhakar Subudhi

Abstract The present paper deals with the forced convection of Al2O3/water and TiO2/water nanofluids with the variation of pH and addition of surfactant in nanofluids. The aim of this study is to investigate the effect of suspension stability on the heat transfer and pressure drop characteristics of nanofluids. The present experimental set up is same as used by our earlier paper [1]. The suspension stability of nanofluids is improved by varying pH of nanofluids. The pH in this study is varied from 3.5±0.2 to 12.5±0.2. Addition of surfactants is employed to improve the suspension stability of nanofluids. The SDS (sodium dodecyl sulfate) surfactant of 0.05 wt % is used to increase the stability of nanofluids in the present study. It is observed that by increasing the suspension stability with the variation of pH and addition of surfactant, the heat transfer characteristics have improved appreciably. The maximum enhancement in heat transfer is obtained with TiO2/water nanofluids at a particle concentration of 0.1 vol % and a pH of 3.5±0.2.


Author(s):  
Mengwei Zhang ◽  
Bin Zhang ◽  
Jianqiang Shan

Nuclear reactor severe accidents can lead to the release of a large amount of radioactive material and cause immense disaster to the environment. Since the Fukushima nuclear accident in Japan, the severe accident research has drawn worldwide attention. Based on the one-dimensional heat conduction model, a DEBRIS-HT program for analyzing the heat transfer characteristics of a debris bed after a severe accident of a sodium-cooled fast reactor was developed. The basic idea of the DEBRIS-HT program is to simplify the complex energy transfer process in the debris bed to a simple one-dimensional heat transfer problem by solving the equivalent thermal conductivity in different situations. In this paper, the DEBRIS-HT program code is prepared by using the existing model and compared with the experimental results. The results show that the DEBRIS-HT program can correctly predict the heat transfer process in the fragment bed. In addition, the heat transfer characteristics analysis program is also used to model the core catcher of the China fast reactor. Firstly, the dryout heat flux when all of molten core dropped on the core catcher was calculated, which was compared with the result of Lipinski’s zero dimensional model, and the error between two values is only 11.2%. Then, the temperature distribution was calculated with the heat power of 15MW.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yu Feng ◽  
Jie Cao ◽  
Xin Li ◽  
Silong Zhang ◽  
Jiang Qin ◽  
...  

An idea of using dimples as heat transfer enhancement device in a regenerative cooling passage is proposed to extend the cooling limits for liquid-propellant rocket and scramjet. Numerical studies have been conducted to investigate the flow and heat transfer characteristics of supercritical hydrocarbon fuel in a rectangular cooling channel with dimples applied to the bottom wall. The numerical model is validated through experimental data and accounts for real fuel properties at supercritical pressures. The study shows that the dimples can significantly enhance the convective heat transfer and reduce the heated wall temperature. The average heat transfer rate of the dimpled channel is 1.64 times higher than that of its smooth counterpart while the pressure drop in the dimpled channel is only 1.33 times higher than that of the smooth channel. Furthermore, the thermal stratification in a regenerative cooling channel is alleviated by using dimples. Although heat transfer deterioration of supercritical fluid flow in the trans-critical region cannot be eliminated in the dimpled channel, it can be postponed and greatly weakened. The strong variations of fuel properties are responsible for the local acceleration of fuel and variation of heat transfer performance along the cooling channel.


2014 ◽  
Vol 575 ◽  
pp. 41-45 ◽  
Author(s):  
Bundit Krittacom ◽  
Pipatana Amatachaya ◽  
Ratipat Sangchot

Numerical model of one-dimensional steady-state on Alumina-Cordierite (Al-Co) open-celled foam using in transpiration cooling system have been conducted to investigate the local energy balance (LEB) of gas and solid phase within porous plate. Physical properties, i.e., porosity (f), pores per inch (PPI) and thickness (x), of Al-Co open-cellular porous material were 0.87, 13 and 0.103 m, respectively. Two equations of the conservative energy consisting of the gas and solid phase were analyzed. From study, it was found that heat convection (HVF) balanced with heat transfer between two phases/ energy of interaction (INT) for the gas phase case. In the solid phase, heat transfer between two phases (INT) tended to offset heat radiation (HRS). Remarkably, heat conduction of both phases (HDF and HDS) was not effected to the present cooling system. Thus, characteristic of fluid flow effecting by HVF and heat transfer governed from HRS was strongly efficient to transpiration cooling system.


2019 ◽  
Vol 16 (1) ◽  
pp. 125-131
Author(s):  
Vivekanand SVB ◽  
Raju VRK

PurposeThe purpose of this paper is to investigate the effects of gravity on the heat transfer behavior of the two-phase flow of water undergoing phase change. Most of the earlier studies of convective boiling considered systems where the gravity is neglected. In contrast, the authors investigated systems where the gravity is considered. The heat transfer characteristics of water during its evaporation in microchannel heat sink are studied for different channel inclinations.Design/methodology/approachComputational fluid dynamics software ANSYS Fluent is used for the computational study. The volume of fluids multiphase method available in the package is used to capture the vapor–liquid interface. Heat transfer studies are carried out for a rectangular microchannel having a characteristic dimension of 825 µm at different inclinations, which varied from −90° (vertically downward) to 90° (vertically upward). During each simulation, the vapor quality is set at the inlet. Uniform heat flux of 250 kW/m2is applied at the bottom wall of the channel in all orientations of the channel, keeping the upper wall insulated.FindingsAs compared to horizontal configuration, a significant increase in the values of heat transfer coefficient during the fluid flow in inclined microchannels is noticed. It is observed that the Nusselt number for the vertically upward (+90°) and horizontal (0°) configuration are similar and that for the 45° upward configuration exceeds other configurations. It is also observed that the heat transfer performance becomes lower in downward configurations; nearly 40-50 per cent drop in average Nusselt number is observed for a mass flux of 250 kg m-2s-1with respect to 45° inclined microchannel. This behavior can be attributed to the gravitational effect on the two-phase flow because of which the vapor phase being less dense moves away from the heated wall, whereas the primary phase being heavier moves towards the heated wall of the channel. Also, the conductivity of the liquid being higher than the vapor phase, as well as the aperture of the liquid being small during this process, its velocity increases resulting in the augmentation of heat transfer.Originality/valueUser-defined-functions for the mass and energy source terms have been written in C code and hooked in ANSYS Fluent to incorporate the phase change mechanism during the evaporation of water.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 601
Author(s):  
Saurabh Yadav ◽  
Jie Liu ◽  
Man Sik Kong ◽  
Young Gyoon Yoon ◽  
Sung Chul Kim

In this study, experiments were performed to use the waste heat in a billet casting industry utilizing bismuth telluride thermoelectric generators (TEGs). Four d-type absorber plates made of copper were installed above the manufactured billet during the cooling process. Three sides of each absorber plate were attached to thermoelectric units. Therefore, a total of 12 units of the thermoelectric system were found to generate a power of 339 W. The power density of the TEG system was found to be 981 W/m2 while running the system at the operating voltage of the battery energy storage system (58 V). A one-dimensional numerical simulation was carried out using FloMASTERTM v9.1 (Mentor Graphics Corporation, Siemens, Dallas, TX, USA) to verify the experimental results, and the numerical results were found to exhibit good agreement with the experimental results. Furthermore, a one-dimensional numerical simulation was carried out to obtain the heat transfer characteristics at varying flow rates of cold water (Reynolds number = 2540–16,943) and at different inlet temperatures (10–25 °C) for the cold side of the TEG. The results indicate that the performance of the thermoelectric generator increases with an increase in the cold-water flow rate and a decrease in the inlet temperature of the cold water.


Author(s):  
Cristian Santiago Perez T. ◽  
Naoto Kasahara

A simplified one dimensional approach for predicting the thermal stress in structures subject to near wall fluid temperature fluctuations has been previously developed and published by the author Kasahara. The method predicted the thermal stress by calculating the frequency response, formulated by the product of the effective heat transfer and the effective thermal stress related to one-dimensional temperature gradient developed through the wall thickness of the structure. Although, currently adopted by the Japanese Society of Mechanical Engineers (JSME) guideline for calculating the thermal fatigue damage in structures, recent studies have highlighted the limitations of the one dimensional approach by showing the presences of multidimensional fluid temperature fluctuation in plane direction, increasing the need to extend the current analysis to more detailed multidimensional guideline. The aim of this research is to advance the theoretical knowledge and understanding of complex multidimensional phenomenon related to local thermal fluctuations within small localized area at the surface of the structure, referred to as “Hot Spot” which is observed to have important effects on the thermal stress phenomenon. Furthermore, the understanding of heat transfer processes in the structure, especially heat diffusion that is known to produce a thermal gradient and, therefore, thermal stress. Understanding the behavior of each heat transfer process in the Hot Spot and the relationship to the response in frequency has formed the bases for extending the current one-dimensional model. This paper presents the analytical results of the study and proposes an extended multidimensional model to understand the thermal stress in tee-junction due to fluid temperature fluctuation and the close relation with the frequency. The model is derived from the understanding of the phenomenon which has leaded to quantify the effect by introducing certain multidimensional factors to explain the impact of the multidimensional fluid temperature fluctuation.


Sign in / Sign up

Export Citation Format

Share Document