Optimal Control for Wheeled Inverted Pendulum Based on Collaborative Simulation

2014 ◽  
Vol 556-562 ◽  
pp. 2444-2447
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Ka Tian ◽  
Qing Yi He

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The optimal control based on MATLAB is used to control wheeled inverted pendulum, and the control law is designed, and its feasibility is verified. However the mathematical model of the wheeled inverted pendulum is linearized and inverted pendulum is a high-order nonlinear system, both of them exist errors. Then the collaborative simulation of MATLAB and ADAMS is also used to control wheeled inverted pendulum, in which wheeled inverted pendulum is built up to virtual prototype model in ADAMS based on virtual prototype technology, and the control law designed from simulation of MATLAB is consulted. At last the results of simulation demonstrate the correctness of optimal control of wheeled inverted pendulum, and it also indicates the way is worth advocating in the study.

2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamad N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu A. Muhammad

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more accurate the model the better the response is when dealing with the real plant. This paper presents a model predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by system identification using a grey box technique. Simulation results show superior performance of the gains computed using the grey box model as compared to common linearized mathematical model. 


Author(s):  

A nonlinear system, which consists of an inverted pendulum mounted on a cart with an electric drive, is considered. A mathematical model is created, its analysis and modeling of the investigated two-dimensional system operation is carried out. Keywords mathematical model; inverted pendulum; system analysis; state space


Author(s):  
V.P. Ivanov

The article deals with the problem of synthesis of terminal control. A functional, a nonlinear mathematical model of a dynamic object, restrictions on the maximum permissible values of control are given. The control law is synthesized. The following statement is proved: the synthesis of the optimal control is carried out using the entire initial mathematical model of the dynamical object, but to calculate the control at any particular moment of time, it is possible to use a reduced (truncated) model, which simplifies the computational algorithms. Thus, there is an informational dualism of the manage- ment task. The approach is an extension of the principle of information redefinition of Yu.B. Germeier to the area of optimal terminal control.


Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 29-47 ◽  
Author(s):  
G. Rigatos ◽  
K. Busawon ◽  
J. Pomares ◽  
M. Abbaszadeh

SummaryThe article proposes a nonlinear optimal control method for the model of the wheeled inverted pendulum (WIP). This is a difficult control and robotics problem due to the system’s strong nonlinearities and due to its underactuation. First, the dynamic model of the WIP undergoes approximate linearization around a temporary operating point which is recomputed at each time step of the control method. The linearization procedure makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. For the linearized model of the wheeled pendulum, an optimal (H-infinity) feedback controller is developed. The controller’s gain is computed through the repetitive solution of an algebraic Riccati equation at each iteration of the control algorithm. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, by using the H-infinity Kalman Filter as a robust state estimator, the implementation of a state estimation-based control scheme becomes also possible.


2014 ◽  
Vol 644-650 ◽  
pp. 199-202
Author(s):  
Pei Qin Wang ◽  
Zeng Shun Xu ◽  
Zuo Feng Sun ◽  
Hui Yuan Jiang

Based on theoretical calculation, virtual prototype technology and the method of finite element analysis, the fully mechanized hydraulic support is designed and simulated. Firstly, the four-link mechanism of hydraulic support mechanical model and mathematical model are established, the demission is confirmed by design calculation of structure. Secondly, through the establishment of rigid parameterized virtual prototype model of the system, dynamics simulation analysis and research is finished based on ADAMS on the mechanical properties. Finally, based on FEA, the modal calculation of key components is completed by using ANSYS.


Author(s):  
Qi Shi ◽  
◽  
Zhejun Fang ◽  
Jinhua She ◽  
Junya Imani ◽  
...  

This paper presents a new method for controlling the motion of a wheeled inverted pendulum (WIP) based on the equivalent-input-disturbance (EID) approach. Coordinate transformation first transforms the WIP into a simple nonlinear system divided into linear and nonlinear parts. The nonlinear part is then treated as a state-and-input-dependent disturbance, and the EID approach is used to estimate and compensate it. Simulation results of an NXTway-GS demonstrate the validity of the method.


2012 ◽  
Vol 490-495 ◽  
pp. 1723-1727
Author(s):  
Jun Ting Wang ◽  
Guo Ping Liu ◽  
Wei Jin ◽  
Gen Fu Xiao

In the paper the mathematical model of the single inverted pendulum is established, on the base of the root locus and the control tasks the control system is made up of double closed-loop unit gain negative feedback and BP neural network controller. The results show that the inverted pendulum is efficiently controlled.


2012 ◽  
Vol 214 ◽  
pp. 775-779
Author(s):  
Yi Chun Ling

Through the study of computer control system, article puts forward a mathematical model in the computer control system which controlled object is digital, and describes the mathematical model through logic algebra to form a set of method solving optimal index control laws which has the characters of easy to understand and easy to operate.


Sign in / Sign up

Export Citation Format

Share Document