Research on New Strucural Aero Fuel Centrifugal Pump Design

2014 ◽  
Vol 568-570 ◽  
pp. 1801-1807
Author(s):  
Jia Li ◽  
Hua Cong Li ◽  
Jiang Feng Fu ◽  
Shu Hong Wang

A inducer and impeller combination aero fuel centrifugal pump design method was given. Based on empirical coefficient method the preliminary structural parameters of the combination Centrifugal pump were designed firstly. Then the Centrifugal pump Hybrid Grid model was built with muti-block structure and octree style.The final structure parameters were obtained by CFD numerical simulation optimization. Finally, the flow field of combination Centrifugal pump was analyzed and compared simulation datas with test datas by making the test samples.The relative error of the design point doesn’t exceed 5%, indicates that the inducer and impeller combination pump meet the design requirements.

2014 ◽  
Vol 568-570 ◽  
pp. 1785-1789
Author(s):  
Jiang Feng Fu ◽  
Hua Cong Li ◽  
Jia Li ◽  
Shu Hong Wang

To solve the problem that single stage booster pump has the problem of low oil pressure at low speed condition. Paper gave a design method for three stage combination vortex pump which uses radial series. The preliminary structural parameters of the vortex pump were designed by using the empirical coefficient method. Then Hex/Wedge grid is used to generate mesh for the established 3D model of the vortex pump. The final structure parameters were obtained by CFD numerical simulation optimization iterately. Finally, the flow field of combination vortex pump was analyzed. Simulation results show that: The combination vortex pump meet the design requirements.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 728 ◽  
Author(s):  
Li ◽  
Ding ◽  
Shen ◽  
Jiang

A high specific speed centrifugal pump is used in the situation of large flow and low head. Centrifugal pump parameters need to be optimized in order to raise its head and efficiency under off-design conditions. In this study, the orthogonal experiment design method is adopted to optimize the performance of centrifugal pump basing on three parameters, namely, blade outlet width b2, blade outlet angle β2 and blade wrap angle φ. First, the three-dimensional model of the centrifugal pump is established by CFturbo and SolidWorks. Then nine different schemes are designed by using orthogonal table, and numerical simulation is carried out in CFX15.0. The final optimized combination of parameters is b2 = 24 mm, β2 = 24°, φ = 112°. Under the design condition, the head and efficiency of the optimized centrifugal pump are appropriately improved, the increments of which are 0.74 m and 0.48%, respectively. However, the efficiency considerably increases at high flow rates, with an increase of 6.9% at 1.5 Qd. The anti-cavitation performance of the optimized centrifugal pump is also better than the original pump. The results in this paper can provide references for parameter selection (b2, β2, φ) in the centrifugal pump design.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2088 ◽  
Author(s):  
Ji Pei ◽  
Majeed Koranteng Osman ◽  
Wenjie Wang ◽  
Desmond Appiah ◽  
Tingyun Yin ◽  
...  

Researches have over the past few years have been applying optimization algorithms to quickly find optimum parameter combinations during cavitation optimization design. This method, although better than the traditional trial-and-error design method, consumes lots of computational resources, since it involves several numerical simulations to determine the critical cavitation point for each test case. As such, the Traditional method for NPSHr prediction was compared to a novel and alternative approach in an axially-split double-suction centrifugal pump. The independent and dependent variables are interchanged at the inlet and outlet boundary conditions, and an algorithm adapted to estimate the static pressure at the pump outlet. Experiments were conducted on an original size pump, and the two numerical procedures agreed very well with the hydraulic and cavitation results. For every flow condition, the time used by the computational resource to calculate the NPSHr for each method was recorded and compared. The total number of hours used by the new and alternative approach to estimate the NPSHr was reduced by 54.55% at 0.6 Qd, 45.45% at 0.8 Qd, 50% at 1.0 Qd, and 44.44% at 1.2 Qd respectively. This new method was demonstrated to be very efficient and robust for real engineering applications and can, therefore, be applied to reduce the computation time during the application of intelligent cavitation optimization methods in pump design.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1180
Author(s):  
Hongliang Wang ◽  
Xiao Huang ◽  
Lijun Yu ◽  
Qi Ding ◽  
Hanqiang Zhang ◽  
...  

Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). Wideband CMUT has good application prospects in ultrasonic imaging, ultrasonic identification, flow measurement, and nondestructive testing due to its excellent characteristics. This paper studies the method of increasing the bandwidth of the CMUT, proposes the structure of the wideband CMUT with a hybrid cell structure, and analyzes the design principles and characteristics of the wideband CMUT structure. By changing the cell spacing and the number of cells of different sizes composing the CMUT, we analyze the simulation of the effect of the spacing and number on the CMUT bandwidth, thereby optimizing the bandwidth characteristics of the CMUT. Next, the selection principle of the main structural parameters of the wideband CMUT is analyzed. According to the proposed principle, the CMUT in the air and water are designed and simulated. The results prove that both the air and water CMUT meet the design requirements. The design rules obtained in this paper can provide theoretical guidance for the selection of the main structural parameters of the wideband CMUT.


2007 ◽  
Vol 31 (2) ◽  
pp. 167-190 ◽  
Author(s):  
Zhang Ying ◽  
Yao Yan-An ◽  
Cha Jian-Zhong

This paper proposed a novel concept of active balancer for dynamic balancing of planar mechanisms. Somewhat similar to a vibration absorber, the active balancer is designed as an independent device, which is placed outside of the mechanism to be balanced and can be installed easily. It consists of a two degree-of-freedom (DOF) linkage with two input shafts, one of which is connected to the output shaft of the mechanism to be balanced by a joint coupling, and the other one is driven by a controllable motor. Flexible dynamic balancing adapted to different working conditions can be achieved by varying speed trajectories of the control motor actively. A design method is developed for selecting suitable speed trajectories and link parameters of the two DOF linkage of the balancer to meet various design requirements and constraints. Numerical examples are given to demonstrate the design procedure and to verify the feasibility of the proposed concept.


2014 ◽  
Vol 685 ◽  
pp. 324-327
Author(s):  
Shuang Zhao ◽  
Yu Bo Yue

The mathematical model of conformal antenna array is the premise and basis of the conformal array antenna signal processing. Based on the analysis of the antenna array, a design method for adjusting the direction of the conformal array antenna is proposed. Through simulation, the pattern of antenna meets the actual needs of the project and it reaches pre design requirements.


Author(s):  
Qihang Liu ◽  
G.Q. Xu ◽  
Jie Wen ◽  
Yanchen Fu ◽  
Laihe Zhuang ◽  
...  

Abstract This paper presents a multi-condition design method for the aircraft heat exchanger (HEX), marking with light weight, compactness and wide range of working conditions. The quasi-traversal genetic algorithm (QT-GA) method is introduced to obtain the optimal values of five structural parameters including the height, the tube diameter, the tube pitch, and the tube rows. The QT-GA method solves the deficiency of the conventional GA in the convergence, and gives a clear correlation between design variables and outputs. Pressure drops, heat transfer and the weight of the HEX are combined in a single objective function of GA in the HEX design, thus the optimal structure of the HEX suitable for all the working conditions can be directly obtained. After optimization, the weight of the HEX is reduced to 2.250 kg, more than 20% lower than a common weight of around 3 kg. Based on the optimal structure, the off-design performance of the HEX is further analyzed. Results show that the extreme working conditions for the heat transfer and the pressure drops are not consistent. It proves the advance of the multi-condition design method over traditional single-condition design method. In general, the proposed QT-GA design method is an efficient way to solve the multi-condition problems related to the aircraft HEX or other energy systems.


2021 ◽  
Author(s):  
Xuefei Shi ◽  
Qi Xu

<p>Steel-concrete composite bridges are currently widely used in highway bridges in China. To reduce durability problems in seasonal freezing region, a design method with given service life is used. The service life is given on the basis of the environment condition and design requirements; then the structural design and safety analysis are carried out, and the durability design and analysis of the structural components are conducted. With the consideration of the mechanical performance, construction convenience and life-cycle cost, the structural scheme for bridges using twin-I girders, cross beams and precast full-width deck is recommended. Weather resistant steel is recommended to be used in nonmarine seasonal freezing regions with stabilization treatment, waterproof and drainage design, local anti-corrosion coating. Finally, a design process considering material, protective layer thickness and construction control is proposed to improve concrete deck durability.</p>


Author(s):  
Xin Ma ◽  
Zhongpei Ning ◽  
Honggang Chen ◽  
Jinyang Zheng

Ultra-High Pressure Vessel (UHPV) with self-protective Flat Steel Ribbons (FSR) wound and Tooth-Locked Quick-Actuating (TLQA) end closure is a new type of vessel developed in recent years. When the structural parameters of its TLQA and Buttress Thread (BT) end closure are determined using the ordinary engineering design method, Design by Analysis (DBA) shows that the requirement on fatigue life of this unique UHPV could hardly be satisfied. To solve the above problem, an integrated FE modeling method has been proposed in this paper. To investigate the fatigue life of TLQA and BT end closures of a full-scale unique UHPV, a three-dimensional (3-D) Finite Element (FE) solid model and a two-dimensional (2-D) FE axisymmetric model are built in FE software ANSYS, respectively., Nonlinear FE analysis and orthogonal testing are both conducted to obtain the optimum structure strength, in which the peak stress in the TLQA or BT end closure of the unique UHPV is taken as an optimal target. The important parameters, such as root structure of teeth, contact pressure between the pre-stressed collar and the cylinder end, the knuckle radius, the buttress thread profile and the local structure of the cylinder, are optimized. As a result, both the stress distribution at the root of teeth and the axial load carried by each thread are improved. Therefore, the load-carrying capacity of the end closure has been reinforced and the fatigue life of unique UHPV has been extended.


Sign in / Sign up

Export Citation Format

Share Document