Dynamic Model and its Application in Economic Forecasting

2014 ◽  
Vol 568-570 ◽  
pp. 1964-1968
Author(s):  
Jing Han Yuan

The economic system is an extremely complex system, internal systems affected by many factors, highly nonlinear, time delay and other characteristics. This has brought great difficulties to the economic modeling and forecasting system. This paper presents an improved modeling and forecasting methods, recombinant methods by introducing chain data and add data growth economic indicators in an artificial neural network training, the time series data input window to solve practical engineering problems forecasts.


2014 ◽  
Vol 1006-1007 ◽  
pp. 386-389
Author(s):  
Ying Hong Yu

In recent years, with the continuous improvement of production capacity, manufacturing industry restructuring and achieved great results, significantly increased the proportion of high-tech industries, some traditional industries has continued to decline. Manufacturing is the material basis of our national economy and the main industry, which largely determines the level of development of comprehensive national strength. This has brought great difficulties to the economic modeling and forecasting system. This paper presents an improved modeling and forecasting methods, recombinant methods by introducing chain data and add data growth economic indicators in an artificial neural network training, the time series data input window to solve practical engineering problems forecasts.



2020 ◽  
Vol 3 (1) ◽  
pp. 51-61
Author(s):  
Syaharuddin ◽  
Abdul Adhiim Rizky ◽  
Lutfi Jauhari ◽  
Siti Fatimah ◽  
Wahyu Ningsih ◽  
...  

This research aims to analyse the acceleration of population growth based on gender in West Nusa Tenggara Province (NTB) using the Forecasting system by constructing the winter's method in the shape of the Multiple Forecasting System (G-MFS) based on Matlab by calculating the period indicator for accuracy to find time series data in the year 2020-2029. At the simulation stage, researchers used the population and gender ratio data in NTB Province in 2009-2019. The method used in conducting research is to use the winter's method. The evaluation of Forecasting results is done by calculating the average error value using the Mean Absolute Percentage Error (MAPE) method. From this study obtained the most optimal parameter value on male data namely ʌ, β and γ sequential values of 0.9, 0.5 and 0.9 while in female data, the value of ʌ, β and γ respectively, 0.2, 0.1 and 0.5. Then with the value of the parameter obtained MAPE value in male data of 1.7785% and in female data of 0.89034%.



2019 ◽  
Vol 8 (4) ◽  
pp. 418-427
Author(s):  
Eko Siswanto ◽  
Hasbi Yasin ◽  
Sudarno Sudarno

In many applications, several time series data are recorded simultaneously at a number of locations. Time series data from nearby locations often to be related by spatial and time. This data is called spatial time series data. Generalized Space Time Autoregressive (GSTAR) model is one of space time models used to modeling and forecasting spatial time series data. This study applied GTSAR model to modeling volume of rainfall four locations in Jepara Regency, Kudus Regency, Pati Regency, and Grobogan Regency. Based on the smallest RMSE mean of forecasting result, the best model chosen by this study is GSTAR (11)-I(1)12 with the inverse distance weighted. Based on GSTAR(11)-I(1)12 with the inverse distance weighted, the relationship between the location shown on rainfall Pati Regency influenced by the rainfall in other regencies. Keywords: GSTAR, RMSE, Rainfall



MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  



2013 ◽  
Vol 347-350 ◽  
pp. 3331-3335
Author(s):  
Qian Ru Wang ◽  
Xi Wei Chen ◽  
Da Shi Luo ◽  
Yu Feng Wei ◽  
Li Ya Jin ◽  
...  

Grey system theory has been widely used to forecast the economic data that are often highly nonlinear, irregular and non-stationary. Many models based on grey system theory could adapt to various economic time series data. However, some of these models didnt consider the impact of the model parameters, or only considered a simple change of the model parameters for the prediction. In this paper, we proposed the PSO based GM (1, 1) model using the optimized parameters in order to improve the forecasting accuracy. The experiment shows that PSO based GM (1, 1) gets much better forecasting accuracy compared with other widely used grey models on the actual chaotic economic data.



2020 ◽  
Vol 13 (02) ◽  
pp. 1-8
Author(s):  
Agrienvi

ABSTRACTChili is one of the leading commodities of vegetables which has strategic value at national and regional levels.An unexpected increase in chili prices often results a surge of inflation and economic turmoil. Study and modeling ofchili production are needed as a planning and evaluation material for policy makers. One of the most frequently usedmethods in modeling and forecasting time series data is Autoregressive Integrated Moving Avarage (ARIMA). Theresults of ARIMA modeling on chili production data found that the data were unstationer conditions of the mean so thatmust differenced while the data on the production of small chilli carried out the stages of data transformation anddifferencing due to the unstationer of data on variants and the mean. The best ARIMA model that can be applied basedon the smallest AIC and MSE criteria for data on the amount of chili and small chilli production in Central KalimantanProvince is ARIMA (3,1,0).Keywords: modeling of chilli, forecasting of chilli, Autoregresive Integrated Moving Avarage, ARIMA, Box-Jenkins.



2021 ◽  
Vol 14 (5) ◽  
pp. 721-729
Author(s):  
Shuyuan Yan ◽  
Bolin Ding ◽  
Wei Guo ◽  
Jingren Zhou ◽  
Zhewei Wei ◽  
...  

Interactive response time is important in analytical pipelines for users to explore a sufficient number of possibilities and make informed business decisions. We consider a forecasting pipeline with large volumes of high-dimensional time series data. Real-time forecasting can be conducted in two steps. First, we specify the part of data to be focused on and the measure to be predicted by slicing, dicing, and aggregating the data. Second, a forecasting model is trained on the aggregated results to predict the trend of the specified measure. While there are a number of forecasting models available, the first step is the performance bottleneck. A natural idea is to utilize sampling to obtain approximate aggregations in real time as the input to train the forecasting model. Our scalable real-time forecasting system FlashP (Flash Prediction) is built based on this idea, with two major challenges to be resolved in this paper: first, we need to figure out how approximate aggregations affect the fitting of forecasting models, and forecasting results; and second, accordingly, what sampling algorithms we should use to obtain these approximate aggregations and how large the samples are. We introduce a new sampling scheme, called GSW sampling, and analyze error bounds for estimating aggregations using GSW samples. We introduce how to construct compact GSW samples with the existence of multiple measures to be analyzed. We conduct experiments to evaluate our solution its alternatives on real data.



Author(s):  
Yiwei Wang ◽  
Shuwang Yang ◽  
Canmian Liu ◽  
Shiying Li

Carbon productivity, defined as the gross domestic product (GDP) per unit of CO2 emissions, has been used by provincial governments in China as in indicator for effort and effect in addressing climate-change problems. The aggregate impact of economic growth on carbon productivity is complex and worthy of extensive investigation to design effective environmental and economic policies. Based on a novel combination of the smooth transition regression model and the Markov regime-switching regression model, this paper analyzes time series data on carbon productivity and economic growth from Hubei Province in China. The results show that the influence of economic growth on carbon productivity is highly nonlinear. In general, economic growth has a positive impact on improving carbon productivity. From a longitudinal perspective, this nonlinear positive impact is further divided into three stages, transiting from a high regime to a low regime and then back to a high regime. The high regime stage, in which economic growth has stronger positive influence on enhancing carbon productivity, is expected to last for considerably longer time than the low regime stage. It is more probable for a low regime stage to transit to a high regime. Once the relation of carbon productivity and economic growth enters the high regime status it becomes relatively stable there. If the government aims to achieve higher carbon productivity, it is helpful to encourage stronger economic development. However, simply enhancing carbon productivity is not enough for curbing carbon emissions, especially for fast growing economies.



Sign in / Sign up

Export Citation Format

Share Document