Fault Detection of WSN Based on Spatial Correlation

2011 ◽  
Vol 58-60 ◽  
pp. 1504-1510 ◽  
Author(s):  
You Bing Feng ◽  
Rong Biao Zhang

Regarding application with smooth variation of detection, spatial correlation of sensors’ data within a small field was applied to sensor nodes’ fault diagnosis. The data were sorted into several continuous sequences by sink node. Sequence with minimum variance was regarded as normal data to determine normal nodes. For undetermined nodes, it can be determined via calculation on deviation to normal nodes’ data of vicinity area. If deviation does not exceed the threshold, the node is normal; otherwise, it is regarded as a fault node. The research on WSN in a greenhouse shows that fault node can be effectively detected in time by this method.

2020 ◽  
Vol 14 (2) ◽  
pp. 205-220
Author(s):  
Yuxiu Jiang ◽  
Xiaohuan Zhao

Background: The working state of electronic accelerator pedal directly affects the safety of vehicles and drivers. Effective fault detection and judgment for the working state of the accelerator pedal can prevent accidents. Methods: Aiming at different working conditions of electronic accelerator pedal, this paper used PNN and BP diagnosis model to detect the state of electronic accelerator pedal according to the principle and characteristics of PNN and BP neural network. The fault diagnosis test experiment of electronic accelerator pedal was carried out to get the data acquisition. Results: After the patents for electronic accelerator pedals are queried and used, the first measured voltage, the upper limit of first voltage, the first voltage lower limit, the second measured voltage, the upper limit of second voltage and the second voltage lower limit are tested to build up the data samples. Then the PNN and BP fault diagnosis models of electronic accelerator pedal are established. Six fault samples are defined through the design of electronic accelerator pedal fault classifier and the fault diagnosis processes are executed to test. Conclusion: The fault diagnosis results were analyzed and the comparisons between the PNN and the BP research results show that BP neural network is an effective method for fault detection of electronic throttle pedal, which is obviously superior to PNN neural network based on the experiment data.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


2013 ◽  
Vol 846-847 ◽  
pp. 442-445
Author(s):  
Chun Lin He

The fault diagnosis technology have emerged and developed rapidly with the development of wireless sensor networks and requirements of applications improve. This paper describes two commonly used sensor network fault modeling. What is more, in order to solve this problem that sensor nodes are vulnerable and therefore produce wrong data, the paper proposes a distributed fault detecting algorithm based on spatio-temporal correlation among data of adjacent nodes. The simulation experiment shows that the algorithm can efficiently detect errors in the network and very few errors are introduced.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shulan Kong ◽  
Mehrdad Saif ◽  
Guozeng Cui

This study investigates estimation and fault diagnosis of fractional-order Lithium-ion battery system. Two simple and common types of observers are designed to address the design of fault diagnosis and estimation for the fractional-order systems. Fractional-order Luenberger observers are employed to generate residuals which are then used to investigate the feasibility of model based fault detection and isolation. Once a fault is detected and isolated, a fractional-order sliding mode observer is constructed to provide an estimate of the isolated fault. The paper presents some theoretical results for designing stable observers and fault estimators. In particular, the notion of stability in the sense of Mittag-Leffler is first introduced to discuss the state estimation error dynamics. Overall, the design of the Luenberger observer as well as the sliding mode observer can accomplish fault detection, fault isolation, and estimation. The effectiveness of the proposed strategy on a three-cell battery string system is demonstrated.


2013 ◽  
Vol 470 ◽  
pp. 683-688
Author(s):  
Hai Yang Jiang ◽  
Hua Qing Wang ◽  
Peng Chen

This paper proposes a novel fault diagnosis method for rotating machinery based on symptom parameters and Bayesian Network. Non-dimensional symptom parameters in frequency domain calculated from vibration signals are defined for reflecting the features of vibration signals. In addition, sensitive evaluation method for selecting good non-dimensional symptom parameters using the method of discrimination index is also proposed for detecting and distinguishing faults in rotating machinery. Finally, the application example of diagnosis for a roller bearing by Bayesian Network is given. Diagnosis results show the methods proposed in this paper are effective.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 173
Author(s):  
Syed Muhammad Tayyab ◽  
Steven Chatterton ◽  
Paolo Pennacchi

Spiral bevel gears are known for their smooth operation and high load carrying capability; therefore, they are an important part of many transmission systems that are designed for high speed and high load applications. Due to high contact ratio and complex vibration signal, their fault detection is really challenging even in the case of serious defects. Therefore, spiral bevel gears have rarely been used as benchmarking for gears’ fault diagnosis. In this research study, Artificial Intelligence (AI) techniques have been used for fault detection and fault severity level identification of spiral bevel gears under different operating conditions. Although AI techniques have gained much success in this field, it is mostly assumed that the operating conditions under which the trained AI model is deployed for fault diagnosis are same compared to those under which the AI model was trained. If they differ, the performance of AI model may degrade significantly. In order to overcome this limitation, in this research study, an effort has been made to find few robust features that show minimal change due to changing operating conditions; however, they are fault discriminating. Artificial neural network (ANN) and K-nearest neighbors (KNN) are used as classifiers and both models are trained and tested by using the selected robust features for fault detection and severity assessment of spiral bevel gears under different operating conditions. A performance comparison between both classifiers is also carried out.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012034
Author(s):  
Hai Zeng ◽  
Ning Zeng ◽  
Jin Han ◽  
Yan Ding

Abstract Engine vibration signals include strong noise and non-stationary signals. By the time domain signal processing approach, it is hard to extract the failure features of engine vibration signals, so it is hard to identify engine failures. For improving the success rate of engine failure detection, an engine angle domain vibration signal model is established and an engine fault detection approach based on the signal model is proposed. The angle domain signal model reveals the modulation feature of the engine angular signal. The engine fault diagnosis approach based on the angle domain signal model involves equal angle sampling and envelope analysis of engine vibration signals. The engine bench test verifies the effectiveness of the engine fault diagnosis approach based on the angle domain signal model. In addition, this approach indicates a new path of engine fault diagnosis and detection.


2021 ◽  
Author(s):  
Afshin Rahimi

There has been an increasing interest in fault diagnosis in recent years, as a result of the growing demand for higher performance, efficiency, reliability and safety in control systems. A faulty sensor or actuator may cause process performance degradation, process shut down, or a fatal accident. Quick fault detection and isolation can help avoid abnormal event progression and minimize the quality and productivity offsets. In space systems specifically, space and power are limited in the satellites, which means that hardware redundancy is not very practical. If actuator faults occur, analytical redundancy techniques should be employed to determine if, where, and how the fault(s) occurred. To do so, different approaches have been developed and studied and one of the wellknown approaches in the literature is using the Kalman Filter as an observer for the purpose of parameter estimation and fault detection. The gains for the filter should be selected and the selection of the process and measurement noise statistics, commonly referred to as “filter tuning,” is a major implementation issue for the Kalman filter. This process can have a significant impact on the filter performance. In practice, Kalman filter tuning is often an ad-hoc process involving a considerable amount of time for trial and error to obtain a filter with desirable –qualitative or quantitative- performance characteristics. This thesis focuses on presenting an algorithm for automation of the selection of the gains using an evolutionary swarm intelligence based optimization algorithm (Particle Swarm) to minimize the residuals of the estimated parameters. The methodology can be applied to any filter or controller but in this thesis, an Adaptive Unscented Kalman Filter parameter estimation applied to a reaction wheel unit is used for the purpose of performance evaluation of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document