Impact of Slag Powder Concent on Splitting Tensile Properties of Concrete

2014 ◽  
Vol 584-586 ◽  
pp. 1366-1369
Author(s):  
Xiao Na Zhang ◽  
Qin Liu

Through the ordinary Portland concrete mixed with slag powder and its experimental research, studies and analyzes the impact on the concrete splitting tensile strength of different age, slag powder content and the water-cement ratio. The test results show that the increase of slag powder content makes splitting tensile strength of concrete reduce after the first increase; growth age makes splitting tensile strength of concrete increases; increasing water-cement ratio makes the splitting tensile strength of concrete intensity decreases.

2013 ◽  
Vol 6 (1) ◽  
pp. 50-61
Author(s):  
Amer M. Ibrahem ◽  
Shakir A. Al-Mishhadani ◽  
Zeinab H.Naji

This investigation aimed to study the effect of nano metakaolin ( NMK ) on some properties (compressive strength ,splitting tensile strength & water absorption ) of concrete. The nano metakaolin (NMK) was prepared by thermal activation of kaolin clay for 2 hours at 750 Ċ. The cement used in this investigation consists of ordinary Portland cement (OPC). The OPC was partially substituted by NMK of ( 3, 5 & 10%) by weight of cement. The C45 concrete was prepared , using water/cement ratio ( W/c) of (0.53) .The Water absorption was tested at 28 days while the tests (compressive strength ,splitting tensile strength) were tested at ages of (7, 28, 60,& 90) days . The compressive strength and splitting tensile strength of concrete with NMK were higher than that of reference concrete with the same W/c ratio.The improvement in the compressive strength when using NMK was (42.2, 55.8 , 63.1% ) at age 28 days for ( 3%, 5%, &10% ) replacement of NMK respectively whereas the improvement in the splitting tensile strength was (0% , 36% & 46.8 %) at age of 28 days when using (3%, 5%, &10% ) NMK respectively. The improvement in the water absorption was (16.6%, 21.79%, &25.6 ) when using (3, 5, &10% )NMK.


2012 ◽  
Vol 166-169 ◽  
pp. 1521-1525
Author(s):  
Hui Wang ◽  
Ai Liang Zhai

By experimental, study on the elastic modulus and the splitting tensile strength together with the influence of the splitting tensile strength with different water-cement ratio, sand rate and water quantity , and the relational formula between the splitting tensile strength and the elastic modulus was summarized by regression analysis.


2013 ◽  
Vol 701 ◽  
pp. 12-16 ◽  
Author(s):  
Mohd Irwan Juki ◽  
Khairunnisa Muhamad ◽  
Mahamad Mohd Khairil Annas ◽  
Koh Heng Boon ◽  
Norzila Othman ◽  
...  

This paper describes the experimental investigation to develop the concrete mix design Nomograph for concrete containing PET as fine aggregate. The physical and mechanical properties were determined by using mix proportion containing 25%, 50% and 75% of PET with water cement ratio (w/c) 0.45, 0.55 and 0.65. The data obtained showed that the inclusion of PET aggregate reduce the strength performances of concrete. All the data obtained were combined into one single graph to develop a preliminary mix design nomograph for PET concrete. The nomograph consist of ; relationship between compressive strength and water cement ratio; relationship between splitting tensile strength water cement ratio; relationship between splitting tensile strength and PET percentage and relationship between compressive strength and PET percentage. The mix design nomograph can be used to assists in selecting the proper mix proportion parameters based on the criteria required.


2011 ◽  
Vol 250-253 ◽  
pp. 2167-2175 ◽  
Author(s):  
Ling Jun Xie ◽  
Ai Liang Zhai

In this paper, the splitting tensile strength experiments of recycled sintered brick-tile concrete with different water-cement ratio, sand rate and water quantity were carried out, and the change law of splitting tensile strength with above three factors was acquired and failure patterns of the samples were analyzed. The results showed that the effects of sand rate and water quantity were not clear, while water-cement ratio was relatively significant and the splitting tensile strength was inversely proportional relationship with it. And the relation between the splitting tensile strength and the cubic compressive strength was summarized from the results.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


Author(s):  
Asma Ul Hosna Meem ◽  
Kyle Rudolph ◽  
Allyson Cox ◽  
Austin Andwan ◽  
Timothy Osborn ◽  
...  

Abstract Digital light processing (DLP) is an emerging vatphotopolymerization-based 3D-printing technology where full layers of photosensitive resin are irradiated and cured with projected ultraviolet (UV) light to create a three-dimensional part layer-by-layer. Recent breakthroughs in polymer chemistry have led to a growing number of UV-curable elastomeric photoresins developed exclusively for vat photopolymerization additive manufacturing (AM). Coupled with the practical manufacturing advantages of DLP AM (e.g., industry-leading print speeds and sub-micron-level print resolution), these novel elastomeric photoresins are compelling candidates for emerging applications requiring extreme flexibility, stretchability, conformability, and mechanically-tunable stiffness (e.g., soft robotic actuators and stretchable electronics). To advance the role of DLP AM in these novel and promising technological spaces, a fundamental understanding of the impact of DLP manufacturing process parameters on mechanical properties is requisite. This paper highlights our recent efforts to explore the process-property relationship for ELAST-BLK 10, a new commercially-available UV-curable elastomer for DLP AM. A full factorial design of experiments is used to investigate the effect of build orientation and layer thickness on the quasi-static tensile properties (i.e., small-strain elastic modulus, ultimate tensile strength, and elongation at fracture) of ELAST-BLK 10. Statistical results, based on a general linear model via ANOVA methods, indicate that specimens with a flat build orientation exhibit the highest elastic modulus, ultimate tensile strength, and elongation at fracture, likely due to a larger surface area that enhances crosslink density during the curing process. Several popular hyperelastic constitutive models (e.g., Mooney-Rivlin, Yeoh, and Gent) are calibrated to our quasi-static tensile data to facilitate component-level predictive analyses (e.g., finite-element modeling) of soft robotic actuators and other emerging soft-matter applications.


2015 ◽  
Vol 1122 ◽  
pp. 225-228
Author(s):  
Tomáš Melichar ◽  
Dalibor Konečný ◽  
Jiří Bydžovský ◽  
Miroslav Vacula

The article presents results of the research focused on suitability assessment of separated dust from formatting and grinding of cement-bonded chipboards to modify their composition. The attention was paid to dust treatment, i.e. milling and sorting. The dust was applied to chipboards in amounts of 5 and 10%. Formulas with water-cement ratio 0.60 and 0.65 were prepared. The influence of sorted dust was subsequently evaluated using setting of selected material properties. In particular the bending strength and tensile strength perpendicular to plate plane were monitored including the influence of frost on these characteristics.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
E. Rabiaa ◽  
R. A. S. Mohamed ◽  
W. H. Sofi ◽  
Taher A. Tawfik

This research investigates the simultaneous impact of two different types of steel fibers, nanometakaolin, and nanosilica on the mechanical properties of geopolymer concrete (GPC) mixes. To achieve this aim, different geopolymer concrete mixes were prepared. Firstly, with and without nanomaterials (nanosilica and nanometakaolin) of 0, 2%, 4%, 6%, and 8% from ground granulated blast furnace slag (GGBFS) were used. Secondly, steel fiber (hooked end and crimped) content of (0, 0.5%, 1, and 1.5%) was used. Thirdly, optimum values of nanomaterials with the optimum values of steel fiber were used. Crimped and hooked-end steel fibers were utilized with an aspect ratio of 60 and a length of 30 mm. Geopolymer mixes were manufactured by using a constant percentage of alkaline activator to binder proportion equal to 0.45 with GGBFS cured at ambient conditions. For alkaline activator, sodium hydroxide molar (NaOH) and sodium hydroxide solution (NaOH) were used according to a proportion (Na2SiO3/NaOH) of 2.33. The hardened concrete tests were performed through the usage of splitting tensile strength, flexural, and compressive experiments to determine the impact of steel fibers, nanometakaolin, and nanosilica individually and combined on performance of GPC specimens. The results illustrated that using a mix composed of the optimum steel fibers (1% content) accompanied by an optimum percentage of 6% nanometakaolin or 4% nanosilica demonstrated a significant enhancement in the mechanical properties of GPC specimens compared to all other mixtures. Besides, the impact of using nanomaterials individually was found to be predominant on compressive strength on GPC specimens especially with the usage of the optimum values. However, using nanomaterials individually compared to using the steel fibers individually was found to have approximately the same splitting tensile strength and flexural performance.


2020 ◽  
Vol 10 (10) ◽  
pp. 3618
Author(s):  
Yanlei Wang ◽  
Wanxin Zhu ◽  
Xue Zhang ◽  
Gaochuang Cai ◽  
Baolin Wan

This paper first presented an experimental study on water absorption and tensile properties of basalt fiber-reinforced polymer (BFRP) laminates with different specimen thicknesses (i.e., 1, 2, and 4 mm) subjected to 60 °C deionized water or alkaline solution for an ageing time up to 180 days. The degradation mechanism of BFRP laminates in solution immersion was also explored combined with micro-morphology analysis by scanning electronic microscopy (SEM). The test results indicated that the water absorption and tensile properties of BFRP laminates were dramatically influenced by specimen thickness. When the BFRP laminates with different thicknesses were immersed in the solution for the same ageing time, the water absorption of the specimens decreased firstly before reaching their peak water absorption and then increased in the later stage with the increase of specimen thickness, while the tensile strength retention sustaining increased as specimen thickness increased. The reason is that the thinner the specimen, the more severe the degradation. In this study, a new accelerated ageing method was proposed to predict the long-term water absorption and tensile strength of BFRP laminates. The accelerated factor of the proposed method was determined based on the specimen thickness. The proposed method was verified by test results with a good accuracy, indicating that the method could be used to predict long-term water absorption and tensile strength retention of BFRP laminates by considering specimen thickness in accelerating tests.


Sign in / Sign up

Export Citation Format

Share Document