Influence of Silica Fume on Mechanical Property of High Performance Concrete

2014 ◽  
Vol 584-586 ◽  
pp. 1482-1485 ◽  
Author(s):  
Yun Feng Li ◽  
Jian Zhu ◽  
Li Xu

Silica fume is a by-product in the production of ferrosilicon and industrial silicon material. With the ultrafine physical structure of and high volcanic ash activity, silica fume is more important admixture in concrete improving the strength and durability of concrete, and it is widely used in high performance concrete engineering. Influence of silica fume on mechanical property of high performance concrete is investigated in this paper. Experimental results show that the strength of concrete increases significantly when suitable dosages of admixtures is applied.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6944
Author(s):  
Julio A. Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13 mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests, and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


Author(s):  
Julio Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1,100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


2008 ◽  
Vol 385-387 ◽  
pp. 701-704 ◽  
Author(s):  
Jung Jun Park ◽  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Sung Wook Kim

Silica fume constitutes an element of extreme importance in improving the strength and fluidity of UHPC. The adopted amount of silica fume generally is generally exceeding 25% of cement in weight but the influence of this amount on the properties of UHPC is still remaining as a domain to be investigated. Accordingly, this paper investigates the effects of the amount of silica fume on the mechanical characteristics of the fluidity, compressive strength, elastic modulus and flexural strength and on the micro structure of UHPC by means of SEM and MIP. Results revealed that adequate amount of silica fume is improving the fluidity and strength. MIP tests demonstrated that such improvement is brought by the increase of hydrates due to the pozzolan reaction and the effective densification inside concrete due to the filler. It seemed also that similar mechanical characteristics can be obtained for a volumetric ratio to cement ranging between 10 and 25%.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 647
Author(s):  
Yang Liu ◽  
Lou Chen ◽  
Keren Zheng ◽  
Qiang Yuan

To improve the environmental efficiency of the reverse filling system, three strategies aim to optimize the packing density, and the mechanical property were adopted in this study. Based on the compressive packing model (CPM), the relationship between the D50 ratio and maximum theoretical packing density for a reverse filling system with 25% and 30% superfine Portland cement was established. For comparison, silica fume and steel fiber were also added to the reverse filling system, respectively. The improvement of packing density by adjusting the D50 ratio was verified through the minimum water demand method, CPM, and modified Andreasen and Andersen (MAA) model. Compared to the reverse filling system added with 3 wt % silica fume, which possesses a comparable mechanical property with the optimized group (adjusted D50 ratio), the incorporation of steel fiber shows a more significant increase. The environmental efficiency of all the samples was quantified into five aspects through the calculation based on the mix proportion, compressive strength, and hydration degree. The comprehensive evaluation demonstrated that the optimized reverse filling system exerts a lower environmental impact and possesses a much higher cement use efficiency compared to the majority of ultra-high performance concrete (UHPC)/ ultra-high performance fiber-reinforced concrete (UHPFRC) reported in published papers.


Author(s):  
Selvapriya R

In the recent past, there have been considerable attempts for improving the properties of concrete with respect to strength and durability, especially in aggressive environments. High performance concrete appears to be better choice for a strong and durable structure.  A large amount of   by-product   or   wastes such as fly-ash, copper slag, silica fume etc.  Are generated by industries, which causes environmental as well as health problems due to dumping and disposal. Proper introduction of silica fume in concrete improves both the mechanical and durability characteristics of the concrete. This paper present literature review on replacement of Cement by Silica Fume which includes current and future trends of research.


1998 ◽  
Vol 25 (3) ◽  
pp. 391-400 ◽  
Author(s):  
MDA Thomas ◽  
K Cail ◽  
R D Hooton

The effects of silica fume on the properties of plastic and hardened concrete are now fairly well-established. If properly used, silica fume imparts significant improvement to the strength and durability of concrete; and the availability of this material together with high-range water reducers (superplasticizers) has been largely responsible for the development of high-strength and high-performance concretes. Silica fume has been used in the Canadian cement and concrete industry for over 15 years. Early use was driven by economy, since concrete of a given strength grade could be produced at lower cementitious material content (and cost) if silica fume was incorporated in the mix due to the initial low selling price of the material. The construction boom of the mid to late 1980s saw the exploitation of high-strength silica fume concrete for high-rise construction. By the 1990s, concerns over the deteriorating infrastructure had shifted the focus to concrete durability and silica fume was finding applications in high-performance concrete. Today, silica fume is perhaps the material of choice for engineers designing concrete to withstand aggressive exposure conditions. This paper documents the major developments in the use of silica fume in Canada and discusses the wide range of applications for which the product may be used to beneficial effect.Key words: blended cement, Canada, concrete, high-performance, silica fume.


2013 ◽  
Vol 372 ◽  
pp. 243-246 ◽  
Author(s):  
Nam Yong Eom ◽  
Wan Shin Park ◽  
Jeong Eun Kim ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

The use of mineral admixture such as fly ash, blast furnace slag and silica fume in making high performance concrete has increased. The objective of this study is to investigate mechanical properties of compressive strength, splitting tensile strength and modulus of elasticity of hardened high performance concrete.


Sign in / Sign up

Export Citation Format

Share Document