Research on the Design Method of Intelligent Interaction in Industrial Design

2014 ◽  
Vol 590 ◽  
pp. 556-560
Author(s):  
Yan Gan ◽  
Jun Qiong Wang

This article aims to find out the efficient design method of intelligent interaction in industrial design. It analyzes its significant impact on industrial design, and looks into three main forms of intelligent interactive design. Through the discussion and comparison of users’ choice based on their behavior characteristics and their selection of the operating signal source, this paper gets a conclusion that the intelligent interactive design goes ahead along with the acceptance of users’ material and spiritual recognition and cooperation, and combines with the ergonomic and product structure knowledge to reach its efficient design method goal for industrial design.

2011 ◽  
Vol 94 (1) ◽  
pp. 246-252 ◽  
Author(s):  
G. Catalanotti ◽  
P.P. Camanho ◽  
P. Ghys ◽  
A.T. Marques

2021 ◽  
Author(s):  
Maximilian Peter Dammann ◽  
Wolfgang Steger ◽  
Ralph Stelzer

Abstract Product visualization in AR/VR applications requires a largely manual process of data preparation. Previous publications focus on error-free triangulation or transformation of product structure data and display attributes for AR/VR applications. This paper focuses on the preparation of the required geometry data. In this context, a significant reduction in effort can be achieved through automation. The steps of geometry preparation are identified and examined with respect to their automation potential. In addition, possible couplings of sub-steps are discussed. Based on these explanations, a structure for the geometry preparation process is proposed. With this structured preparation process it becomes possible to consider the available computing power of the target platform during the geometry preparation. The number of objects to be rendered, the tessellation quality and the level of detail can be controlled by the automated choice of transformation parameters. We present a software tool in which partial steps of the automatic preparation are already implemented. After an analysis of the product structure of a CAD file, the transformation is executed for each component. Functions implemented so far allow, for example, the selection of assemblies and parts based on filter options, the transformation of geometries in batch mode, the removal of certain details and the creation of UV maps. Flexibility, transformation quality and time savings are described and discussed.


Author(s):  
Maximilian Peter Dammann ◽  
Wolfgang Steger ◽  
Ralph Stelzer

Abstract Product visualization in AR/VR applications requires a largely manual process of data preparation. Previous publications focus on error-free triangulation or transformation of product structure data and display attributes for AR/VR applications. This paper focuses on the preparation of the required geometry data. In this context, a significant reduction in effort can be achieved through automation. The steps of geometry preparation are identified and examined concerning their automation potential. In addition, possible couplings of sub-steps are discussed. Based on these explanations, a structure for the geometry preparation process is proposed. With this structured preparation process, it becomes possible to consider the available computing power of the target platform during the geometry preparation. The number of objects to be rendered, the tessellation quality, and the level of detail can be controlled by the automated choice of transformation parameters. Through this approach, tedious preparation tasks and iterative performance optimization can be avoided in the future, which also simplifies the integration of AR/VR applications into product development and use. A software tool is presented in which partial steps of the automatic preparation are already implemented. After an analysis of the product structure of a CAD file, the transformation is executed for each component. Functions implemented so far allow, for example, the selection of assemblies and parts based on filter options, the transformation of geometries in batch mode, the removal of certain details, and the creation of UV maps. Flexibility, transformation quality, and timesavings are described and discussed.


Author(s):  
Gautam Kumar ◽  
Seul Ah Kim ◽  
ShiNung Ching

The induction of particular brain dynamics via neural pharmacology involves the selection of particular agonists from among a class of candidate drugs and the dosing of the selected drugs according to a temporal schedule. Such a problem is made nontrivial due to the array of synergistic drugs available to practitioners whose use, in some cases, may risk the creation of dose-dependent effects that significantly deviate from the desired outcome. Here, we develop an expanded pharmacodynamic (PD) modeling paradigm and show how it can facilitate optimal construction of pharmacologic regimens, i.e., drug selection and dose schedules. The key feature of the design method is the explicit dynamical-system based modeling of how a drug binds to its molecular targets. In this framework, a particular combination of drugs creates a time-varying trajectory in a multidimensional molecular/receptor target space, subsets of which correspond to different behavioral phenotypes. By embedding this model in optimal control theory, we show how qualitatively different dosing strategies can be synthesized depending on the particular objective function considered.


Author(s):  
Sagar Chowdhury ◽  
Zahed Siddique

With the advancements of 3D modeling software, the use of CAD in design has become a standard practice. In recent years development in computer hardware and improvements in user friendliness of the CAD software has allowed designers to quickly and easily modify the CAD models. This modification capability allows CAD to be an integral part of the design process. Due to the increase in global competition, companies have become increasingly interested in fast and efficient design processes. One way to achieve improved efficiency is through better collaboration among designers working in common or similar projects and disciplines. A large design problem often requires specialized knowledge from several fields. Collaboration among the designers from these fields will ensure efficient design. Interaction among the designers can prevent redesign of similar components/subsystems, which requires the ability to share their designs. With the increase of collaboration, designers can now get access to large databases of 3D CAD models. But the challenge lies in search capabilities to identify common models from a large database. These considerations suggest that in the near future a challenge in 3D CAD industry will be how to find models of similar components and products. This paper presents an approach and its implementation to measure the similarity among a number of CAD models. The approach is based on the extraction and organization of information from the CAD models, which is followed by the suitable selection of commonality index and calculation of the commonality among a set of CAD models. A set of Vacuum cleaners are modeled and then compared to demonstrate the application of the approach.


2020 ◽  
Vol 15 (2) ◽  
pp. 43-49
Author(s):  
Sukartini ◽  
Firman Surya ◽  
Welsi Haslina ◽  
Yusnani ◽  
Ulfi Maryati

This study aims to create a database application program that is able to process data on lecturer course activities and generate reports on the calculation of teaching fees periodically during the pandemic which requires lecturers to report lecture activities online. The system design method approach used is prototyping, namely by creating a program that most closely resembles user needs in a relatively short time. The prototype was generated using the Microsoft Access 2010 database application. The selection of microsoft access to create a prototype was based on the availability of complete facilities in Microsoft Access to design table relations, input forms, query processing, reports and the visual basic programming language for applications. Google Forms used to receive lecture data input online. The application development stages consist of design, testing and implementation stages. This application has succeeded in providing the right solution for the Padang State Polytechnic Accounting Department during the pandemic in calculating and reporting lecture activities and lecturers teaching fees.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6651
Author(s):  
Zhaonian Wang ◽  
Jiangbing Du ◽  
Weihong Shen ◽  
Jiacheng Liu ◽  
Zuyuan He

Chromatic dispersion engineering of photonic waveguide is of great importance for Photonic Integrated Circuit in broad applications, including on-chip CD compensation, supercontinuum generation, Kerr-comb generation, micro resonator and mode-locked laser. Linear propagation behavior and nonlinear effects of the light wave can be manipulated by engineering CD, in order to manipulate the temporal shape and frequency spectrum. Therefore, agile shapes of dispersion profiles, including typically wideband flat dispersion, are highly desired among various applications. In this study, we demonstrate a novel method for agile dispersion engineering of integrated photonic waveguide. Based on a horizontal double-slot structure, we obtained agile dispersion shapes, including broadband low dispersion, constant dispersion and slope-maintained linear dispersion. The proposed inverse design method is objectively-motivated and automation-supported. Dispersion in the range of 0–1.5 ps/(nm·km) for 861-nm bandwidth has been achieved, which shows superior performance for broadband low dispersion. Numerical simulation of the Kerr frequency comb was carried out utilizing the obtained dispersion shapes and a comb spectrum for 1068-nm bandwidth with a 20-dB power variation was generated. Significant potential for integrated photonic design automation can be expected.


2014 ◽  
Vol 933 ◽  
pp. 682-686
Author(s):  
Yang Zhang

The basic structure of Cable Digital TV Head-end System is presented in this paper. Cable Digital TV Head-end connected between the TV Signal Source and the Transmission Line is a system which can convert a variety of signal sources into a transport stream to meet the exacting standards of the transmission. The transport streams will finally be sent to service terminal by the transmitting device and the existing network. This paper gives the method of constructing Cable Digital TV Head-end System and some useful suggestions about the selection of equipment.


Sign in / Sign up

Export Citation Format

Share Document