scholarly journals AIR FLOW ANALYSIS AROUND THE AUTOGYRO FUSELAGE

2017 ◽  
Vol 3 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Zbigniew Czyż ◽  
Ibrahim Ilhan ◽  
Mert Akcay ◽  
Jacek Czarnigowski

The paper presents the results of the simulation of the air flow around the gyroplane without the influence of the rotor and pusher propellers. Three-dimensional calculations were performed using ANSYS Fluent software. Based on the calculations, the values of the drag force and the lift force on each component of the rotorcraft were determined. Based on the results obtained, the effect of angle of attack on the aerodynamic forces was obtained.

2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


2019 ◽  
Vol 196 ◽  
pp. 00036
Author(s):  
Svetlana V. Pogudalina ◽  
Natalya N. Fedorova ◽  
Svetlana A. Valger

In this paper, the results of a numerical simulation of the air flow in the vicinity of a parallelepiped fixed on a plate are presented. The 3D calculations were performed with the ANSYS Fluent software using scale-resolving DES approach. The obtained results are compared with the experimental data and with the results of the previous numerical calculation.


2014 ◽  
Vol 660 ◽  
pp. 689-693 ◽  
Author(s):  
Mohd Sofian ◽  
Rosly Nurhayati ◽  
A.Jamit Rexca ◽  
S. Shamsudin Syariful ◽  
Abdullah Aslam

This study presents a simulation result of an evaluation of the aerodynamic performance of a moving car with a wind turbine system. Sedan type cars (approaching the size of Proton Wira car) were modeled using the SolidWork software and simulation was done by ANSYS FLUENT software. Three car models with different wind turbine system positions (in front of the front bumper, on top of the hood and on top of the roof) plus one model without the wind turbine system were simulated. The study proved that the position of the wind turbine system installation will change the characteristic of the air flow around the car body and affects the aerodynamic performance of the car. Extended front bumper of a car is not significantly affecting the aerodynamic performance of the car. This extended bumper seems to be the suitable area to install a wind turbine system and the investigation shows that the aerodynamic performance of the car improved due to lower drag coefficient, Cd..


2014 ◽  
Vol 592-594 ◽  
pp. 1889-1896 ◽  
Author(s):  
G. Srinivas ◽  
B.P. Madhu Gowda

Any aircraft wing is the major component which will play vital role in the generation of lift and at different maneuvering moments throughout the flight. So to maintain this good maneuverability the aircraft wing has to undergo deferent deflections called angle of attack such that the high lift and low drag or vice versa can be settled in the flight. Taking this as the motivation the analysis was carried out on the standard wing airfoil comparing with new designed airfoil. Analyze the numerical simulation values like coefficient of lift, coefficient of Drag, Lift, Drag, and Energy parameters with wind tunnel data to predict accuracy for both the airfoils. Through the selected public literature standard airfoil data and designed airfoil data has been chosen, the geometry was created in the GAMBIT and also the meshing by selecting the suitable c-grid and rectangular grid for the better flow analysis in the FLUENT. The mesh file was imported into the FLUENT software there suitable boundary conditions and operating conditions are given for successful flow convergence. Finally analyzing these results are expecting to be best suitable for good aeromechanical features.


2019 ◽  
Vol 26 (4) ◽  
pp. 205-210
Author(s):  
Adam Rojewski ◽  
Jarosław Bartoszewicz

AbstractThe article presents a comparison of the wing in ground effect magnitude of conceptual WIG craft model main characteristics for a wing with and without endplates which are also known as winglets in regular aircraft. In article, the author describes WIG effect with and WIG craft, which operates on low altitude, smaller than the length of wing chord, mostly above the water reservoir. WIG effect phenomenon is simple. The first aircraft needs to fly at adequate altitude, with a smaller distance between lower airfoil surface and ground static pressure rises, leading to rising of lift force. The main advantage of the wing in ground effect craft on regular aircraft is a much higher lift to drag ratio, also this phenomenon provides to drop in specific fuel consumption of aircraft and allows flying with heavier cargo due to higher lift force. Characteristics present in the article were designated from simulations, which were conducted in Ansys Fluent software. Results obtained for a wing with endplate in numerical analysis shows the superiority of this approach. Endplates provide to increase WIG effect by a decrease in induced drag through the move out vertices from the wing tips, which are made by differential pressure above and under the wing. As winglets in regular aircraft, endplates provide to save fuel. WIG craft does not need airports so it could be a cheap alternative for modern aircraft.


2018 ◽  
Vol 12 (4) ◽  
pp. 4300-4328
Author(s):  
Pasymi Pasymi ◽  
Y. W. Budhi ◽  
A. Irawan ◽  
Y. Bindar

Flow structure inside a chamber greatly determines the process performances. Therefore, the flow structure inside a chamber are often constructed in such a way as an effort to obtain equipment performances in accordance with the expectations. This study explored flow structure inside several chamber geometries and operating conditions. Three types of chamber, namely; GTC, DTC and TJC were set as the investigated chambers. The Computational Fluid Dynamics technique, supported by some experimental data from the literature, is used as an investigation method. The RANS based models, under Ansys-Fluent software were used in this numerical investigation. Simulation results revealed that the flow structures of GTC and DTC are predominantly created by spiral and vortex patterns. The vortex stabilizer diameter in the GTC affects the vortex pattern, velocity profile and pressure drop. The flow structure of DTC presents the most complex behavior. The flow structure inside TJC, in the case of unconfined outlet boundary, is characterized by the helical and wavy jet pattern. This structure is determined by the initial tangential intensity (IIT) and the inlet aspect ratio (RIA). The structures of vortex, helical, and wavy axial flow are properly constructed and visualized in this paper. There is no a turbulence model which is always superior to the other models, consistently. The standard k-ε model exhibits the realistic and robust performances among  all of investigatied cases.


Aviation ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 114-122
Author(s):  
Zbigniew Czyż ◽  
Paweł Karpiński

The paper presents some of the works related to the project of modern gyrocopter construction with the possibility of a short start, known as "jump-start". It also presents a methodology related to numerical calculations using Computational Fluid Dynamics based on ANSYS Fluent three-dimensional solver. The purpose of the work was to calculate the forces and aerodynamic moments acting on the gyrocopter stabilizers. The calculations were carried out for a range of angle of attack α from –20° to +25° and for a sideslip angle β from 0° to 20°. Based on the calculations carried out, analysis of the impact of the slip angle on the load on the stabilizers has been made.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050370
Author(s):  
Yu-Shan Meng ◽  
Li Yan ◽  
Shi-Bin Li ◽  
Wei Huang

In this study, the drag force and heat flux reduction mechanism induced by the aerodisk (with disks on its nose) with the freestream Mach number being 4.937 has been numerically investigated, and the simulations have been carried out by the three-dimensional Reynolds-averaged Navier–Stokes equations coupled with the SST [Formula: see text] turbulence model. The influence of the angle of attack on the drag and heat flux reduction has been analyzed comprehensively. The obtained results show that the drag force of the spiked blunt body can be reduced by the aerodisk, and the drag force decreases by 24.63%. The flow mechanism of the complex flow is drastically modified by the angle of attack, and this results in a strong flow asymmetry. This asymmetry becomes more and more obvious as the angle of attack increases. Both the pressure force and viscous force increase with the increase of the angle of attack. Moreover, both the lift and drag coefficients increase as the angle of attack increases, and the lift-to-drag ratio increases first and then decreases with the increase of the angle of attack. When the angle of attack is [Formula: see text], the maximum lift-to-drag ratio is close to 0.36.


Author(s):  
M. Sugavaneswaran ◽  
S. Saha ◽  
P. P. Kumar ◽  
G. S. Sharma ◽  
R. Prakash

Catalytic converters are used to convert toxic gases into less toxic residues. Monolithic honeycomb structure coated with Noble metals as catalysts are used for this purpose.  Noble metals cause a redox reaction and put a check on the emission of toxic elements. Thus, increases in contact time with noble metals, lesser the emission. Hence the larger surface area is preferred in the monolithic structure of catalytic converter for coating Noble metals. This paper does a comparative study over a new monolithic structural design in place of the conventional honeycomb structure of the same dimensions with least weight and more contact area. Conventional used structure and proposed monolithic structure designs were simulated in ANSYS fluent software and the results are compared. The proposed design resulted in 9.23% increase of contact surface area and weight reduction of 64.18%. Exhaust flow analysis in terms of back pressure and exhaust temperature for the proposed structure are almost equivalent to the earlier design.  


2020 ◽  
pp. 004051752098258
Author(s):  
Malik YH Saty ◽  
Nicholus Tayari Akankwasa ◽  
Jun Wang

The compact spinning system with a lattice apron utilizes air-flow dynamics to condense fibers in a bunch and enhance the yarn properties. One of the main challenges with this method is the lack of a comprehensive understanding of the air-flow field's effect in the condensing zone. This work presents a numerical and experimental investigation of the effects of three-dimensional (3D) printed guiding devices on the air-flow characteristics and yarn properties. Firstly, the 3D numerical model of the compact spinning system was set up based on the compact spinning machine geometrical dimensions. Secondly, different 3D prototypes were developed, simulated, and analyzed using computational fluid dynamics based on ANSYS software. The prototypes (A-type, B-type, and C-type), selected according to the simulation results, were then 3D printed to enable further experimental investigation. Air-flow analysis results in the air-suction flume area exhibiting a very high negative pressure, and the centerline zone was characterized by high velocity. Experimental results revealed that the three yarns spun with guiding devices had better strength, hairiness, and evenness than those spun without a guiding device. The model developed can be further improved and utilized for commercial purposes and is anticipated to improve compact spun yarn properties significantly.


Sign in / Sign up

Export Citation Format

Share Document