Prediction of Mechanical Properties of Polymer Composites Reinforced with Feather Fibers of ‘Emu’ Bird

2014 ◽  
Vol 592-594 ◽  
pp. 694-699
Author(s):  
Chandra V. Sekhar ◽  
V. Pandurangadu ◽  
T. Subba Rao

Now a day’s researchers are focusing on natural fiber composites. In the present work composites were prepared with epoxy (Araldite LY-556) resin and ‘emu’ bird feathers as fiber. The composites were prepared by varying the weight percentage (P) of ‘emu’ fiber ranging from 1 to 5 and length (L) of feather fibers from 1 to 5 cm. The various mechanical properties like tensile strength, flexural strength; flexural modulus and impact strength were determined. An attempt is made to model the mechanical properties through response surface methodology (RSM). Analysis of Variance (ANOVA) is used to check the validity of the model. The results reveal that the developed models are suitable for prediction of mechanical properties of Epoxy ‘Emu’ Feather Fiber Composites.

2020 ◽  
Vol 305 ◽  
pp. 28-35
Author(s):  
Anslem Wong Tsu An ◽  
Sujan Debnath ◽  
Vincent Lee Chieng Chen ◽  
Moola Mohan Reddy ◽  
Alokesh Pramanik

In recent years, studies regarding natural fiber reinforced composites have been increased as they are biodegradable with good mechanical performance therefore can help to overcome the environmental issue. As the natural fibers are easy to obtain, many industries have started to make use of natural fiber composites which are light in weight and possess good mechanical properties. However, the natural fiber composites also possess certain limitations most importantly their high moisture absorption ability which makes them incompatible at degradable environment. The fiber constituents of natural fiber composite may have different type of interactions at different environmental conditions. In addition, the involvement of nanoparticles in the composite may be the solution to overcome the deficiencies. In this research, the degradation behaviour of Oil palm empty fruit bunch (OPEFB) fibers reinforced epoxy composites upon exposure to degradable environmental conditions and the effect of adding nanoparticles have been studied. The tensile tests were conducted before and after the exposure to different environmental conditions including plain water, moist soil, brine solution, and cooking oil. Results shows that the addition of 10wt% of OPEFB fiber to the epoxy composites had improved the mechanical tensile strength up to 15.97% and composites exposed to brine solution have the most prominent sign of degradation in mechanical properties in both composites with and without nanosilica. Nevertheless, the composites with nanosilica have shown up to 24.28% improvement in tensile strength after exposure to different environmental conditions. The improvement were attributed due to filling the voids of the composites with nanosilica and good interfacial adhesion between the nanofiller, fiber, and matrix.


2013 ◽  
Vol 689 ◽  
pp. 382-388
Author(s):  
Ju Seok Oh ◽  
Song Woo Nam ◽  
Sun Woong Choi

The importance of NFC (Natural Fiber Composite) as construction materials is widely accepted all over the world. But it seems that NFC manufacturers have complicated information about the effect of ingredients to their products. Hence systematic study for optimum composition of NFC is needed. This study is aimed to elucidate the effect of ingredients to the mechanical properties of NFC. We devised design of experiments to draw a firm conclusion. The experiments were conducted with polymer processing machines which are widely accepted in polymer processing industries. The result of ANOVA analysis showed that the most important ingredient of NFC is wood flour. And as the length of wood flour increases, the mechanical properties are enhanced. Contrary to wood flour, base resin has little effect to the mechanical properties of NFC. The effect of coupling agent to flexural modulus is not ignorable, but the effect to flexural strength is different from that of flexural modulus.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


2019 ◽  
Vol 8 (2) ◽  
pp. 2338-2342 ◽  

This paper focus on Madar and Bauhinia Racemosa fibers has high potential as reinforcing agents in polymer composites. The composites plates were fabricated by hand layup method with varying the fiber weight percentage of 5%,10%,15% and 20% on mechanical and water absorption properties are analyzed. The mechanical properties of such as tensile, flexural and impact properties of madar and Bauhinia Racemosa fiber mat reinforced polyester composites were studied at first time in this work. The tensile, flexural and impact strength of Bauhinia Racemosa fiber mat reinforced polyester composites had proved higher strength performance than the madar fiber mat reinforced polyester composites.


2017 ◽  
Vol 890 ◽  
pp. 12-15 ◽  
Author(s):  
Elammaran Jayamani ◽  
Muhammad Khusairy bin Bakri

In this research, the alkaline treated and untreated sugarcane bagasse was used as reinforcement with unsaturated polyester to make composites. The composites were made with 0 to 20 weight percentage of fibers using compression molding. Acoustical, dielectrical and mechanical properties of the composites were studied according to the American Society for Testing Materials (ASTM) standards. The result shows that the composites with higher sugarcane bagasse loading show higher acoustical and dielectrical properties. The composites tensile strength increased up to 10wt% of fiber loading and then starts decreasing eventually. Tensile strength and sound absorption coefficients of alkali treated fiber composites shown slightly better results than untreated fiber composites. The dielectric constant of treated fiber composites were lower compared with untreated fiber composites.


2015 ◽  
Vol 815 ◽  
pp. 523-528 ◽  
Author(s):  
Rui Hong ◽  
Kun Zhang ◽  
Bao Ying Liu ◽  
Gang Zhang ◽  
Xiao Jun Wang ◽  
...  

The carbon fiber (CF) reinforced polyphenylene sulfide (PPS) composite was modified by aminated polyphenylene sulfide (PPS-NH2) with different mass fractions. The quantified influence of aminated PPS on PPS/CF composites was investigated. The PPS/CF composite with 7wt% PPS-NH2 showed the best mechanical properties. The tensile strength, flexural strength, flexural modulus and impact strength of the composites increased by 12.5%, 13.0%, 38.5% and 31.5%, respectively. PPS-NH2 hardly influenced the melting process of PPS/CF composite. But the crystallization temperature (Tc) of PPS were obviously increased with the present of aminated PPS.


2017 ◽  
Vol 47 (8) ◽  
pp. 2050-2073 ◽  
Author(s):  
A Praveen Kumar ◽  
M Nalla Mohamed

Economic and environmental concerns lead the researchers toward development of sustainable and renewable materials of which reinforced composites are part of. The abundantly available natural fibers have attracted the researchers to study their performance as reinforcements and feasibility for making automobile components. The performance of composite materials is mainly assessed through their mechanical properties. However, natural fibers to date were mainly used as reinforcements to create bulk composite components with reduced cost rather than improved mechanical performances. Among the methods available for improving mechanical properties of the natural fiber composites, combined mercerization treatment, hybridization, and incorporation of fly ash fillers in the matrix are the best solutions. Therefore, the objective of this research is to evaluate the tensile properties of hybrid kenaf/glass composites with and without fly ash particulate filler as per ASTM standards. Moisture absorption behavior and its effect on the tensile properties of hybrid composites are also investigated. The results revealed that the addition of 10wt % fly ash particles with natural fiber composites increased the tensile strength of composites while hybridization with glass fibers reduced the water absorption properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Kusmono ◽  
Zainal Arifin Mohd Ishak

Unsaturated polyester (UP)/glass fiber/clay composites were prepared by hand layup method. The effect of clay loading on the morphological and mechanical properties of UP/glass fiber composites was investigated in this study. X-ray diffraction (XRD) was used to characterize the structure of the composites. The mechanical properties of the composites were determined by tensile, flexural, unnotched Charpy impact and fracture toughness tests. XRD results indicated that the exfoliated structure was found in the composite containing 2 wt% of clay while the intercalated structure was obtained in the composite with 6 wt% of clay. The tensile strength, flexural strength, and flexural modulus of the composites were increased in the presence of clay. The optimum loading of clay in the UP/glass fiber composites was attained at 2 wt%, where the improvement in in tensile strength, flexural strength, and flexural modulus was approximately 13, 21, and 11%, respectively. On the other hand, the highest values in impact toughness and fracture toughness were observed in the composites with 4 wt% of clay.


2020 ◽  
Vol 13 ◽  
Author(s):  
V. Arumugaprabu ◽  
K.Arun Prasath ◽  
S. Mangaleswaran ◽  
M. Manikanda Raja ◽  
R. Jegan

: The objective of this research is to evaluate the tensile, impact and flexural properties of flax fiber and basalt powder filled polyester composite. Flax fiber is one of the predominant reinforcement natural fiber which possess good mechanical properties and addition of basalt powder as a filler provides additional support to the composite. The Composites are prepared using flax fiber arranged in 10 layers with varying weight percentage of the basalt powder as 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.% respectively. From the results it is inferred that the composite combination 10 Layers of flax / 5 wt.%, basalt Powder absorbs more tensile load of 145 MPa. Also, for the same combination maximum flexural strength is about 60 MPa. Interestingly in the case of impact strength more energy was absorbed by 10 layers of flax and 30 wt.% of basalt powder. In addition, the failure mechanism of the composites also discussed briefly using SEM studies.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


Sign in / Sign up

Export Citation Format

Share Document