Technology Research Vehicle Braking Stability Control

2014 ◽  
Vol 602-605 ◽  
pp. 1219-1222
Author(s):  
Ya Rong Liu

In this paper, the stability of the car when braking, the establishment of a complete vehicle dynamics model to analyze the main causes and influencing factors of automobile brake instability. Select the vehicle yaw rate and sideslip angle as the control variable, meaning the use of certain applications of fuzzy control theory, the ESP fuzzy controller, and control strategy simulation with.

2020 ◽  
Author(s):  
Zhi-cheng HE ◽  
Zhen-yu ZHANG ◽  
En-lin ZHOU ◽  
Bao-lv WEI

Abstract Accurate and reliable vehicle state information is very significant to the vehicle lateral stability control, while it is hard to get information such as body sideslip angle and lateral tire forces due to lack the nonlinearity of the tire. This paper presents a new combined method (adaptive cubature Kalman filter(ACKF) and adaptive proportion integral observer(APIO)) to estimate body sideslip angle, yaw rate and lateral tire force for vehicle system. Firstly, based on a four-wheel vehicle dynamics model, (ACKF) is used to estimate body sideslip angle and yaw rate with considering the nonlinear lateral tire force stage. Due to system nonlinearities and un-modeled dynamics, APIO is used to improve the estimated body sideslip angle by utilizing the estimated yaw rate and vehicle lateral speed. Then, ACKF is used to estimate the front and rear lateral tire forces based on the one-order tire dynamics model. By utilizing the partition coefficient calculated by the vertical force model, the front and rear lateral tire forces are further distributed to left and right wheels. For comparison, estimation model based on extended Kalman filter(EKF) is built and investigated. Simulation using Matlab/Simulink-CarSim and car test verifies the effectiveness of the proposed method.


2009 ◽  
Vol 16-19 ◽  
pp. 544-548 ◽  
Author(s):  
Shu Wen Zhou ◽  
Hai Shu Chen ◽  
Si Qi Zhang ◽  
Li Xin Guo

Rollover and jack-knifing of tractor semitrailer on high speed obstacle avoidance under emergency are serious threats for motorists. A tractor semitrailer model was built with multi-rigid-body method in this paper. The steering performance of tractor semitrailer has been analyzed, as well as the stability control theory, including yaw rate following, anti-rollover. The dynamics simulation for yaw rate following and anti-rollover has been performed on the dynamic tractor semitrailer. The results show that the vehicle dynamics control proposed in this paper can stabilize the tractor semitrailer, rollover and jack-knifing are prevented and the tractor semitrailer more accurately follows the driver's desired path.


2014 ◽  
Vol 898 ◽  
pp. 914-918
Author(s):  
Yun Yin Zhang ◽  
Chun Guang Liu ◽  
Zi Li Liao

A new kind of control method named "G-Vectoring control" is used in vehicle steering stability control, which uses the lateral acceleration to control the longitudinal acceleration, and improves the steering stability by redistributing the driving force. The motor and its control system as well as the vehicle system control are modeled by Matlab, the vehicle dynamics model is designed by adams. After the co-simulation of snakelike tests, the results shows that the sideslip angle is well controlled by G-Vectoring control.


2011 ◽  
Vol 403-408 ◽  
pp. 5107-5111
Author(s):  
Chang Gao Xia ◽  
Ji Lei Wang

Electronic Stability Program (ESP) has become the focus of the study in the field of automotive active safety and chassis control in recent years, which was developed from ABS and TCS. ESP mainly works through adjusting the size and the distribution of the longitudinal tire force. ESP can make vehicle produce effective yaw moment to restrain oversteering or understeering, However, ESP is a typical nonlinear, time-delay, time-varying parameter system and its mathematical model is very complex. It is difficult to design the control model by traditional control theory. Fuzzy control does not depend on a precise mathematical model. It is employed to handle complicated questions of nonlinear dynamics. First, in this paper, the7-DOF of vehicle dynamics model based on the H. B. Pacejka tyre model (magic formula) and vehicle reference model were established by using the MATLAB/SIMULINK. Then by using fuzzy control principle to direct at the nonlinear, time varying characteristics of the ESP system, a controller of yaw rate based on fuzzy control was designed. An analysis of the simulation results of J-turn and lane change on slippery road surface shows that the present stability control system based on the yaw rate is effective in maintaining the yaw rate and the sideslip angle within the optimal range, thus improving the vehicle stability.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6667
Author(s):  
Szilárd Czibere ◽  
Ádám Domina ◽  
Ádám Bárdos ◽  
Zsolt Szalay

Electronic vehicle dynamics systems are expected to evolve in the future as more and more automobile manufacturers mark fully automated vehicles as their main path of development. State-of-the-art electronic stability control programs aim to limit the vehicle motion within the stable region of the vehicle dynamics, thereby preventing drifting. On the contrary, in this paper, the authors suggest its use as an optimal cornering technique in emergency situations and on certain road conditions. Achieving the automated initiation and stabilization of vehicle drift motion (also known as powerslide) on varying road surfaces means a high level of controllability over the vehicle. This article proposes a novel approach to realize automated vehicle drifting in multiple operation points on different road surfaces. A three-state nonlinear vehicle and tire model was selected for control-oriented purposes. Model predictive control (MPC) was chosen with an online updating strategy to initiate and maintain the drift even in changing conditions. Parameter identification was conducted on a test vehicle. Equilibrium analysis was a key tool to identify steady-state drift states, and successive linearization was used as an updating strategy. The authors show that the proposed controller is capable of initiating and maintaining steady-state drifting. In the first test scenario, the reaching of a single drifting equilibrium point with −27.5° sideslip angle and 10 m/s longitudinal speed is presented, which resulted in −20° roadwheel angle. In the second demonstration, the setpoints were altered across three different operating points with sideslip angles ranging from −27.5° to −35°. In the third test case, a wet to dry road transition is presented with 0.8 and 0.95 road grip values, respectively.


2014 ◽  
Vol 614 ◽  
pp. 267-270
Author(s):  
Jian Feng Chen ◽  
Xiao Dong Sun ◽  
Long Chen ◽  
Hao Bin Jiang

Sideslip angle is an important parameter for the stability control of high-speed vehicles. In this paper, a novel state observer based on strong tracking SRUKF is presented to estimate the sideslip angle. Besides the strong tracking SRUKF algorithm, a 2-DOF vehicle model and a “Magic Formula” are utilized to construct the state observer. Numerical simulations are implemented to testify on the accuracy performance of estimation based on the strong tracking SRUKF and standard UKF. The results show that the trends using two types of filters are accordant with the theoretic values, and the accuracy of the former is better than the latter.


2013 ◽  
Vol 380-384 ◽  
pp. 1746-1749
Author(s):  
Jun Zhan ◽  
Jiang Li Lu ◽  
Liang Xu ◽  
Wei Zhang

At present, the performance of the vehicle dynamics model is mainly evaluated objectively through offline simulation. In this paper, a vehicle dynamics model was implemented in dSPACE, which was applied to the Automotive Performance Simulator and the preliminary study was made for the realization of the subjective evaluation of the performance of vehicle dynamics model through the real-time closed-loop online simulation. The dSPACE interface library was used to write a Clib program to operate and control the Carsim RT model running on the dSPACE platform, which realized the communication between the external hardware and the real-time hardware of dSPACE.


2020 ◽  
Vol 33 (2) ◽  
pp. 227-241
Author(s):  
Fawad Azeem ◽  
Ghous Narejo

Effective monitoring and control of isolated rural microgrid in the developing world is challenging. The modern communication and monitoring is difficult to handle in such communities due to a complicated approach to the area, lack of modern facilities and unavailability of skilled manpower. Implementation of a microgrid in such areas using intermittent renewable sources and limited storage is challenging. Uncontrolled load consumption leads to the system-wide outages due to prolonged storage utilization in peak hours and is referred here as battery storage stress hours (BSSH). This research is focused to study and analyze the behavior of parametric load monitoring and control algorithm that could control the distinctive load of the microgrid during BSSH. In the proposed algorithm, the residential loads are distinctively controlled while utilizing the three locally available parameters that are the state of the charge of storage, solar irradiations and ambient temperature. In other words, the natural parameter variations have been uniquely utilized as a monitoring tool for load control. The fuzzy controller takes a decision for the activation or deactivation of any load based on the three parameters variation ranges. It is observed from the simulation and experimental results that while only utilizing locally available parameters the effective load control is possible.


Author(s):  
Hanna Zs. Horvath ◽  
Denes Takacs

Abstract The instability of the car-trailer systems very often leads to the snaking and/or rocking motions of trailers. In order to reduce the safety risk of these unwanted vibrations, stability control can be applied. In this paper, we use a spatial trailer model to analyze the effect of a possible control algorithm, which actuates by means of braking. For the sake of simplicity, the dynamics of the towing vehicle is modeled by the lateral displacement of the tow hitch that is supported laterally by a spring and damper. The longitudinal speed of the vehicle is kept constant. The effect of the braking forces are emulated in our study via a control torque, which is proportional to the yaw angle and the yaw rate. The time delay of the controller is also considered. Linear stability charts are constructed in the plane of the different system parameters. Linearly stable and unstable parameter domains are identified both for the vertical position of the center of gravity and the control gains. Numerical simulations are used to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document