Aluminum-Copper Bilayers Thin Films Deposited at Room Temperature by RF Magnetron Sputtering

2014 ◽  
Vol 606 ◽  
pp. 105-109
Author(s):  
Zulhelmi Alif Abdul Halim ◽  
Muhamad Azizi Mat Yajid ◽  
Zulkifli Mohd Rosli ◽  
Riyaz Ahmad M. Ali

In this work, the effects of room temperature deposition on the structural properties of Al-Cu bilayers thin films were investigated. The bilayers were sputter deposited by RF magnetron sputtering on Si {100} wafers without substrate heating. The thickness of each layer is approximately 500 nm thick. Characterization were performed with grazing incidence X-ray diffraction (XRD) cross-sectional field emission scanning electron microscope (FE-SEM) with chemical analysis by energy dispersive X-ray (EDX) and atomic force microscope (AFM). It was found polycrystalline Al and Cu thin films have been grown with {111} preferred growth orientation with very fine crystallites size (less than 20 nm). The bilayers were in non-strained condition, but each layer shows different morphologies between the columnar and non columnar structure. AFM analysis revealed that the bilayers top surface appears to have higher surface roughness (Ra= 20 nm) due to low adatoms surface mobility during room temperature deposition.

2020 ◽  
Vol 1012 ◽  
pp. 119-124
Author(s):  
Paulo Victor Nogueira da Costa ◽  
Rodrigo Amaral de Medeiro ◽  
Carlos Luiz Ferreira ◽  
Leila Rosa Cruz

This work investigates the microstructural and morphological changes on CIGS thin films submitted to a post-deposition heat treatment. The CIGS 1000 nm-thick films were deposited at room temperature by RF magnetron sputtering onto glass substrates covered with molybdenum films. After deposition, the samples were submitted to a heat treatment, with temperatures ranging from 450 to 575 oC. The treatment was also carried out under a selenium atmosphere (selenization), from 400 to 500 oC. Morphological analyzes showed that the as-deposited film was uniform and amorphous. When the treatment was carried out without selenization, the crystallization occurred at or above 450 oC, and the grains remained nanosized. However, high temperatures led to the formation of discontinuities on the film surface and the formation of extra phases, as confirmed by X-ray diffraction data. The crystallization of the films treated under selenium atmosphere took place at lower temperatures. However, above 450 °C the film surface was discontinuous, with a lot of holes, whose amount increased with the temperature, showing that the selenization process was very aggressive. X-ray diffraction analyses showed that the extra phases were eliminated during selenization and the films had a preferential orientation along [112] direction. The results indicate that in the manufacturing process of solar cells, CIGS films deposited at room temperature should be submitted to a heat treatment carried out at 450 °C (without selenization) or 400 °C (with selenization).


2012 ◽  
Vol 576 ◽  
pp. 543-547 ◽  
Author(s):  
Shaiful Bakhtiar Hashim ◽  
Norhidayatul Hikmee Mahzan ◽  
Sukreen Hana Herman ◽  
Mohamad Rusop Mahmood

Silicon thin film was successfully deposited on glass substrate using Radio frequency (RF) magnetron sputtering. The effect of deposition pressure on the physical and structural properties of thin films on the glass substrate was studied. The film thickness and deposition rate decreased with decreasing deposition pressure. Field emission scanning electron microscopy (FESEM) shows as the deposition pressure increased, the surface morphology transform from concise structured to not closely pack on the surface. Raman spectroscopy result showed that the peak was around 508 cm-1, showing that the thin film is nanocrystalline instead of polycrystalline silicon.


2013 ◽  
Vol 543 ◽  
pp. 277-280
Author(s):  
Marius Dobromir ◽  
Alina Vasilica Manole ◽  
Simina Rebegea ◽  
Radu Apetrei ◽  
Maria Neagu ◽  
...  

Rutile N-doped TiO2thin films were grown by RF magnetron sputtering on amorphous and crystalline substrates at room temperature. The surface elemental analysis, investigated by X-ray photoelectron spectroscopy indicated that the nitrogen content of the films could be adjusted up to values as high as 4.1 at.%. As demonstrated by the X-ray diffraction data, the as-deposited films (100 200 nm thick) showed no detectable crystalline structure, while after successive annealing in air for one hour at 400°C, 500°C and 600°C, the (110) rutile peaks occurred gradually as dominant features. The rutile phase in the films was confirmed by the band gap values of the deposited materials, which stabilized at 3.1 eV, for the thin films having 200 nm thicknesses.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


Author(s):  
Wuttichai Phae-ngam ◽  
Tossaporn Lertvanithphol ◽  
Chanunthorn Chananonnawathorn ◽  
Rattanachai Kowong ◽  
Mati Horprathum ◽  
...  

2015 ◽  
Vol 1792 ◽  
Author(s):  
Jiantuo Gan ◽  
Augustinas Galeckas ◽  
Vishnukanthan Venkatachalapathy ◽  
Heine N. Riise ◽  
Bengt G. Svensson ◽  
...  

ABSTRACTCuxO thin films have been deposited on a quartz substrate by reactive radio frequency (rf) magnetron sputtering at different target powers Pt (140-190 W) while keeping other growth process parameters fixed. Room-temperature photoluminescence (PL) measurements indicate considerable improvement of crystallinity for the films deposited at Pt>170 W, with most pronounced excitonic features being observed in the film grown using Pt=190 W. These results corroborate well with the surface morphology of the films, which was found more flat, smooth and homogeneous for Pt >170 W films in comparison with those deposited at lower powers.


2006 ◽  
Vol 957 ◽  
Author(s):  
Luis Manuel Angelats ◽  
Maharaj S Tomar ◽  
Rahul Singhal ◽  
Oscar P Perez ◽  
Hector J Jimenez ◽  
...  

ABSTRACTZn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O targets were used to grow thin films by rf magnetron sputtering. XRD patterns of the films showed a strong preferred orientation along c-axis. Zn0.90Co0.10O film showed a transmittance above 75% in the visible range, while the transmittance of the Zn0.85[Co0.50Fe0.50]0.15O film was about 45%; with three absorption peaks attributed to d-d transitions of tetrahedrally coordinated Co2+. The band gap values for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films were 2.95 and 2.70 eV respectively, which are slightly less than ZnO bulk. The Zn0.90Co0.10O film showed a relatively large positive magnetoresistance (MR) at the high magnetic field in the temperature range from 7 to 50 K, which reached 11.9% a 7K for the magnetoresistance. The lowest MR was found at 100 K. From M-H curve measured at room temperature shown a probable antiferromagnetic behavior, although was possible to observe little coercive field of 30 Oe and 40 Oe for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films, respectively.


Sign in / Sign up

Export Citation Format

Share Document