A Novel 3-DOF Parallel Robot and its Kinematic Analysis

2014 ◽  
Vol 607 ◽  
pp. 759-763
Author(s):  
Xiao Bo Liu ◽  
Xiao Dong Yuan ◽  
Xiao Feng Wei ◽  
Wei Ni

This paper deals with the design and analysis of a novel and simple two-translation and one-rotation (3 degrees of freedom, 3-dof) mechanism for alignment. Firstly, degree of freedom of the parallel robot is solved based on the theory of screw. Secondly considering the demand of motion control, we have conducted the analysis on the 3-dof parallel robot, which includes inverse displacement, forward displacement, and simulation based on SolidWorks Motion. The simulation results indicate that the novel 3-dof robot is suitable for performing the required operations.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xinxin Shi ◽  
Jiacai Huang ◽  
Fangzheng Gao

A novel 6-degree-of-freedom (6-DOF) parallel robot driven by six novel linear motors is designed and controlled in this paper. Detailed structures of linear motors are illustrated. A control strategy based on kinematics of the 6-DOF parallel robot is used, and six linear motors are controlled to track their own desired trajectories under a designed fractional-order active disturbance rejection controller (FOADRC). Compared with the normal ADRC, two desired trajectories and three different working situations of a linear motor are simulated to show good performances of the FOADRC. Experimental results show that six linear motors can track their own desired trajectories accurately under payloads and disturbances, and the novel 6-DOF parallel robot can be controlled well.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


Author(s):  
Muhammed R. Pac ◽  
Dan O. Popa

Legged robots are more maneuverable, and can negotiate rough terrain much better than conventional locomotion using wheels. However, since the kinematic or dynamic analysis of such robots involves closed chains, it is typically more difficult to investigate the impact of design changes, such as the number, or the design of its legs, to robot performance. Most legged robots consist of 4 legs (quadrupeds) or 6 legs (hexapods). This paper discusses the kinematic analysis of an unconventional, symmetrical 5-legged robot with 2-DOF (Degrees Of Freedom) universal joints in each leg. The analysis was carried out in order to predict the mobility of the upper body platform, and investigate the number of robot actuators needed for mobility. The product of exponentials formulation with respect to the local coordinate frames is used to describe the twists of the joints. The analysis is based on the idea that the robot body platform along with the legs can be considered instantaneously as a parallel robot manipulating the ground. Hence, the analysis can be done using the Jacobian formulation of parallel robots. Simulation results confirm the mobility analysis that the robot can have at most 3-DOF for the body and that these freedoms are coupled rotations and translations in 3D space also with a dependence on the configuration of the robot.


Robotica ◽  
1992 ◽  
Vol 10 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Amirat ◽  
F. Artigue ◽  
J. Pontnau

SummaryThis paper presents at first a static and kinematic analysis of closed chains mechanisms which permits to deduce different possible fully parallel architectures. Then we focus on a particular parallel architecture with C5 links designed to perform precise assembly tasks. A general modeling of this C5 parallel robot is presented. Two typical assembly tasks in the automotive industry are also proposed; the first one uses the C5 links parallel robot as a left-hand device, while the second one uses it as the terminal tool of a sequential manipulator.


2014 ◽  
Vol 940 ◽  
pp. 153-158
Author(s):  
Run Xin Qu ◽  
Yuan Yuan Zou ◽  
Xiao Wei An ◽  
Si Jun Zhu

Giant structure processes involve highly dangerous manual welding operations. aiming at the welding for giant structures, tankers and other large work pieces, a five degrees of freedom (DOF) gantry type automatic welding robot was developed which has our own property right. Forward/inverse kinematics for the mechanical structure is analyzed in which pose of the welding torch is defined as a free vector. Then kinematics equations were proposed for torch pose fitting. Finally, simulation results for robot kinematics analysis and torch pose fitting were also proposed with Matlab. The result not only proves the feasibility of torch pose fitting, but also provides a basis for further study on kinematic analysis, torch pose fitting and off-line programming about gantry type automatic welding robot.


2003 ◽  
Vol 70 (5) ◽  
pp. 732-738
Author(s):  
K. Yagasaki

We study a mathematical model for unforced and undamped, initially straight beams. This system is governed by an integro-partial differential equation, and its energy is conserved: It is an infinite-degree-of-freedom Hamiltonian system. We can derive “exact” finite-degree-of-freedom mode truncations for it. Using the differential Galois theory for Hamiltonian systems, we prove that any two or more modal truncations for the model are nonintegrable in the following sense: The Hamiltonian systems do not have the same number of “meromorphic” first complex integrals which are independent and in involution, as the number of their degrees of freedom, when they are regarded as Hamiltonian systems with complex time and coordinates. This also means the nonintegrability of the infinite-degree-of-freedom model for the beams. We present numerical simulation results and observe that chaotic motions occur as in typical nonintegrable Hamiltonian systems.


Author(s):  
Salua Hamaza ◽  
Patrice Lambert ◽  
Marco Carricato ◽  
Just Herder

This paper explores the fundamentals of parallel robots with configurable platforms (PRCP), as well as the design and the kinematic analysis of those. The concept behind PRCP is that the rigid (non-configurable) end-effector is replaced by a closed-loop chain, the configurable platform. The use of a closed-loop chain allows the robot to interact with the environment from multiple contact points on the platform, which reflects the presence of multiple end-effectors. This results in a robot that successfully combines motion and grasping capabilities into a structure that provides an inherent high stiffness. This paper aims to introduce the QuadroG robot, a 4 degrees of freedom PRCP which finely merges planar motion together with grasping capabilities.


Author(s):  
Oleksandr Stepanenko ◽  
Ilian A. Bonev

In this paper, we present a novel 4-DOF SCARA parallel robot. The 2-DOF portion of the novel robot has been proposed before and consists of an end-effector connected to the base through two legs of type RRR and one passive constraining leg of type RP, where all the base-mounted revolute joints are coaxial. Contrary to SCARA robots based on the four-bar mechanism (RRRRR), the novel robot has a fully cylindrical workspace with no voids or parallel singularities in it. The novel robot has essentially the same workspace as that of a similarly sized ceiling-mounted SCARA serial robot (RR) with links of equal length. However, the proposed robot has the advantage of having all motors mounted on the base. We present the 2-DOF portion of the robot, its kinematic analysis, and its optimal design, and finally propose a mechanism design for the 4-DOF SCARA parallel robot.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012002
Author(s):  
Asha G Hagargund ◽  
Muralidhar kulkarni ◽  
Hariram S Satheesh

Abstract Time-Sensitive Networking (TSN) is an emerging technology, which enables advancements in applications like industrial automation, automatic vehicle-to-vehicle communication, etc. which hosts various time-critical applications, ensuring bounded latency. The novel idea of this paper is to present OMNET++ simulation-based complex multi-hop TSN network using the native VLAN concept to bring out a cost-effective model for inter-TSN and Intra-TSN domains. This paper investigates the performance of hybrid IEEE standards, ie.IEEE 802.1Qbu and IEEE 802.1Qbv standards. The simulation results show that the combination of these standards, when effectively scheduled in switches will reduce the latency by 3.3 µseconds in time-critical applications. Further, it is observed that in Best effort traffic, frame loss is also very less in the range of 2-5 frames out of 1385 frames. These results certainly will be of great value in more complex TSN deployments.


Sign in / Sign up

Export Citation Format

Share Document