Application of Zeolite as a Partial Replacement of Cement in Concrete Production

2014 ◽  
Vol 621 ◽  
pp. 30-34
Author(s):  
Eva Vejmelková ◽  
Dana Koňáková ◽  
Monika Čáchová ◽  
Martin Keppert ◽  
Adam Hubáček ◽  
...  

Natural zeolite rocks are known to be able to act as Supplementary Cementitious Materials (SCM) in Portland cement based concrete. Generally SCMs are reacting with portlandite and providing binding hydration products just as Portland cement does. In this way an SCM can substitute certain amount of Portland cement in concrete and thus reduce the related energy consumption and CO2 generation. Due to a large variability of SCMs composition and properties there is not any general rule for an optimum Portland cement substitution level. In this paper, the influence of natural zeolite rock on selected mechanical, hygric and thermal properties of concrete is studied. Experimental results show that the analyzed zeolite is acting as a pozzolan but for higher amounts its application leads to an increase in concrete porosity which affects its properties in a significant way.

Author(s):  
O. R. Ogirigbo ◽  
J. O. Ukpata ◽  
I. Inerhunwa

Ground Granulated Blast Furnace Slag (GGBS) is a type of Supplementary Cementitious Material (SCM) that is currently being used extensively in the global construction industry. SCMs are cheaper than Portland cement, help to improve certain properties of concrete and also help to reduce the environmental footprint associated with the production of Portland cement. GGBS is readily available in most parts of the world as a waste product from iron and steel production. However, its use as a SCM in some countries has not been fully maximized. This is primarily because of lack of documented studies on the properties of GGBS that influences its suitability as a SCM, especially in tropical environments. This paper reviewed the use of GGBS as a SCM for the partial replacement of Portland cement, with particular emphasis on its potential use in tropical warm environments such as Nigeria and other similar countries.


2021 ◽  
Vol 920 (1) ◽  
pp. 012014
Author(s):  
R M K Tahara ◽  
M H Hasnan ◽  
N Z N Azizan

Abstract Conventional construction materials are considered as exploitation to natural resources. Thus, numerous alternative materials using natural or waste materials are proposed for concrete production as a response for greener, renewable and biodegradable environments with regard to sustainability. Natural fibre such as bamboo has been rapidly proposed for many applications especially for concrete production in construction. In order to tackle the environmental issues and focusing on sustainability, natural fibre of Beting bamboo is proposed for partial replacement used as supplementary cementitious materials. Current study investigates the partial replacement of coarse aggregate with Beting bamboo in concrete mixtures. The outcome of the study discovers that through the mix design, replacing 5% by weight of Beting bamboo is an ideal % to achieve concrete mixture for structural and nonstructural application. However, with the increase % of Beting bamboo for partial replacement, the strength of the concrete gradually decreased.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1112 ◽  
Author(s):  
Suvash Chandra Paul ◽  
Peter Mbewe ◽  
Sih Kong ◽  
Branko Šavija

Concrete production utilizes cement as its major ingredient. Cement production is an important consumer of natural resources and energy. Furthermore, the cement industry is a significant CO2 producer. To reduce the environmental impact of concrete production, supplementary cementitious materials such as fly ash, blast furnace slag, and silica fume are commonly used as (partial) cement replacement materials. However, these materials are industrial by-products and their availability is expected to decrease in the future due to, e.g., closing of coal power plants. In addition, these materials are not available everywhere, for example, in developing countries. In these countries, industrial and agricultural wastes with pozzolanic behavior offer opportunities for use in concrete production. This paper summarizes the engineering properties of concrete produced using widespread agricultural wastes such as palm oil fuel ash, rice husk ash, sugarcane bagasse ash, and bamboo leaf ash. Research on cement replacement containing agricultural wastes has shown that there is great potential for their utilization as partial replacement for cement and aggregates in concrete production. When properly designed, concretes containing these wastes have similar or slightly better mechanical and durability properties compared to ordinary Portland cement (OPC) concrete. Thus, successful use of these wastes in concrete offers novel sustainable materials and contributes to greener construction as it reduces the amount of waste, while also minimizing the use of virgin raw materials for cement production. This paper will help the concrete industry choose relevant waste products and their optimum content for concrete production. Furthermore, this study identifies research gaps which may help researchers in further studying concrete based on agricultural waste materials.


Author(s):  
P.L. Ng ◽  
J.J. Chen ◽  
A.K.H. Kwan

Superfine natural zeolite (SNZ) is obtained by grinding natural zeolite to micro-fine size, whereas condensed silica fume (CSF) is by-product of ferrosilicon industry. Both SNZ and CSF are environmentally-friendly supplementary cementitious materials for mortar and concrete production. Owing to the high fineness and favourable grading of SNZ and CSF (the median particle sizes were 4 μm and 0.4 μm, respectively), the addition of SNZ and CSF could successively fill the voids between ordinary Portland cement (OPC) grains and increase the packing density of the binder, so as to reduce the volume of voids to be filled with water. Therefore, triple blending of OPC+SNZ+CSF can benefit the overall performance of cement paste by releasing more water for flowability improvement at the same water/binder (W/B) ratio, or adopting a lower W/B ratio for strength improvement at the same flowability requirement. This study evaluated the effects of adding SNZ and CSF on the packing density and water film thickness of binder. The experimental results proved that triple blending with SNZ and CSF could increase the packing density and improve the flowability and cohesiveness of cementitious paste.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1609
Author(s):  
Rohollah Rostami ◽  
Agnieszka J. Klemm ◽  
Fernando C. R. Almeida

Supplementary cementitious materials (SCMs), such as fly ash (FA) and ground granulated blast-furnace slag (GGBS), are often used as a partial replacement of cements to improve the sustainability of Portland cement-based materials and reduce their environmental impact. Superabsorbent polymers (SAPs) can be successfully used as internal curing agents in ultra-high performance cementitious materials by facilitating the hydration process and controlling the water supply in both fresh and hardened states. This paper intends to characterise the physical and chemical properties of SAPs and their sorption properties in different blended cement environments. The swelling capacity and kinetics of absorption of three superabsorbent polymers with different chemical compositions and grading were tested in different cement environments. Experimental results of their sorption performance in distinct solutions, including deionised water (DI), Portland cement (PC), and blended cements (PC-FA and PC-GGBS) and changes in pH of different solutions over time were investigated. The results showed that PC-FA solution had the lowest pH followed by PC-GGBS solution. Moreover, SAPs samples displayed the highest absorption capacities in PC-FA solutions, and the lowest swelling capacities were found in PC-GGBS solutions. Furthermore, SAP with smaller particle sizes had the greatest absorption capacity values in all solutions.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Hongxia Qiao ◽  
Desire Ndahirwa ◽  
Yuanke Li ◽  
Jinke Liang

The research gap about the application of basalt rock powder (BRP) and superfine sand (SS) as fillers in preparation of cement mortar is significant. This study characterizes the mechanical performance of the cement mortar formulated considering Portland cement, artificial sand and water as principal mixture components. To analyze the influence of BRP and SS on the strength properties of the mortar, the Portland cement and artificial sand have been replaced by BRP and SS respectively. The replacement percentages are 10%, 15%, 20%, 25% and 30% when the basalt rock powder replaces Portland cement and in case artificial sand is replaced by superfine sand, 10%, 20%, 30%, 40% and 50%. The percentages of basalt rock powder and superfine sand replace, in volume, the same quantity of Portland cement and artificial sand that forms portion of the mixture. The strength indexes such as flexural strength, compressive strength, ultrasonic pulse velocity and dynamic elastic modulus were investigated. Overall results show that despite the reduction of mechanical properties of cement mortar, BRP and SS can be used as partial replacement of Portland cement and artificial sand in account of ratios from 10% to 25% basalt rock powder quantity by Portland cement weight and 10% to 20% superfine sand amount by volume of artificial sand.


Author(s):  
Agboola Shamsudeen Abdulazeez ◽  
Amina Omolola Suleiman ◽  
Simdima Gabriel Gideon ◽  
Solomon Wutong Poki

- Presently researches all over the world is concentrating on alternative materials as partial cement replacement in concrete production. The use of pozzolanic material in concrete is becoming increasingly important because of the need for more sustainable cementing products. Volcanic ash is a form of natural pozzolan and has a chemical composition comparable to other supplementary cementitious materials. In this paper, volcanic ash was used to partially replace cement in the ratio of 0%, 5%, 10%, 15% and 20% by volume in concrete and cured in H2SO4 and MgSO4 environment. 28-day target strength was adopted and concrete tested at 7, 14, 28 and 56 days’ hydration period. Specific gravity, bulk density and setting time test on volcanic ash were carried out. Fresh concrete tests such as slump and compacting factor test were carried out along-side hardened concrete tests like compressive strength and split tensile strength. The result shows that the maximum compressive strength at 28 days was at 0% control concrete, while at 56 days the maximum strength was observed at 10% replacement of cement with volcanic ash and it is considered as optimum percentage replacement.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Rosemary Bom Conselho Sales ◽  
Fernando Augusto Sales ◽  
Enio Pazini Figueiredo ◽  
White José dos Santos ◽  
Nelcy Della Santina Mohallem ◽  
...  

Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 μm on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.


2020 ◽  
Vol 13 ◽  
Author(s):  
Sri Ram Krishna Mishra ◽  
Pradeep Kumar Ghosh ◽  
Manoj Kulshreshtha

Background: The previous studies have focused curing effect of mainly on high strength concrete, where strict supervision is maintained. This study is based upon general purpose concreting work for commercial and residential construction in absence of skilled manpower and supervision. Objective: The objective of this study is to establish a thumb rule to provide 7 days initial curing for maintaining quality for unsupervised concreting irrelevant to type of cement and grading. Methods: In this study concrete samples made with locally available commercial cements were cured for various initial exposure. Results: The results shows that concrete cured after a gap of 4 days from the time of de-moulding have given lowest strength as compared to concrete cured in standard practices i.e. where proper curing protocol had been followed. Conclusion: Initial curing is most important aspect of gaining desired strength. The findings after this study shows that curing affects the strength of concrete in variable grading. Initial curing has great importance for concrete with all types of Portland cement. Concrete with supplementary cementitious materials gives lowest strength initially but results higher strength after 28 days as compared to Portland cement.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2291
Author(s):  
Alessandro P. Fantilli ◽  
Daria Jóźwiak-Niedźwiedzka

The environmental impact of the Portland cement production and the large use of cement-based building materials is a growing problem [...]


Sign in / Sign up

Export Citation Format

Share Document