Design of Space Sliding Rails and Mechanical Analysis

2014 ◽  
Vol 624 ◽  
pp. 207-212
Author(s):  
Fu Pei Liu ◽  
Jian Zhong Shang ◽  
Zi Rong Luo ◽  
Tao Zhang ◽  
Nai Hui Yu

Unlike commercial sliding rails, space sliding rails need to meet complex mechanical requirements in the state of ground tooling, launch and on-orbit. The former could slide smoothly while their carrying capacity is low. As a result, they cannot be applied directly to the space stations, manned spacecrafts and other space probes. Hence, it is necessary to design a kind of full-pulling sliding rails which can be suitable for three completely different mechanical conditions. In this paper, we firstly built the mechanical models of the ground tooling, launch and on-orbit state, then a kind of sliding rails is designed according to the mechanical models, finally, a simulation analysis was carried out on the designed sliding rail. The result shows that this kind of sliding rails meets all the design requirements, which verifies the validity of the models.

2010 ◽  
Vol 156-157 ◽  
pp. 700-703
Author(s):  
Su Bo Ren ◽  
Ming Hua Bai

In order to solve arching and air leakage problems of sintering machine, based on the mechanical analysis to arching phenomenon, the hydraulic torque-loading device was designed, the simulation to the device was made using AMESim software, finds the reasons that system generating vibration and noise when running. By adjusting the structure parameters of hydraulic components, adding accumulator and damping system, solve the vibration problem of the system effectively, and can run smoothly in accordance with design requirements, the research provides a new method for solving arching and air leakage problems.


2020 ◽  
Vol 316 ◽  
pp. 02001
Author(s):  
Jing Sheng ◽  
Aamir Sohail ◽  
Mengguang Wang ◽  
Zhimin Wang

In order to realize the need for lightweight automobiles through replacing steel with plastics, the research and development of the plastic clutch pump body based on the friction welding was carried out. For the clutch pump body connected by friction welding process between the upper pump body and the lower pump body, the technical requirements of pressure 14 MPa and durability (high temperature 7.0 × 104 times, room temperature 7.0 × 105) are required. The structure type of the upper and lower pump bodies of the end face welding type was proposed. Through the static analysis of the pump body and weld and the mechanical analysis under the working condition, the structure of the clutch pump body (upper and lower pump body) was determined. According to the established welding process, the pressure of the clutch pump body is more than 15 MPa, and the number of high-temperature durable circulation and the number of room temperature durable circulation also reached 7.2×104 and 7.3×105 times respectively. The results show that the structural design of a clutch pump body meets the design requirements.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2021 ◽  
Vol 1035 ◽  
pp. 813-818
Author(s):  
Zheng Long Li ◽  
Lin Chen ◽  
Zhi Hong Li ◽  
Guo Shuai Yan ◽  
Wei Li

In order to study the pressure carrying capacity of X80 pipe with metal loss defect on the girth weld the water-pressure blasting test of the pipe with metal loss defect was analyzed by experiment and finite element simulation. Based on this, the sensitivity analysis of the factors affecting the pressure carrying of the pipeline, such as the circular size, the axial size, and the depth of the metal loss defect, was carried out. The research results show that the circular size of the metal loss defect on the girth weld had little impact to the pressure carrying capacity of the pipe while it reduced with the increasing of the axial size and the depth of the metal loss defect.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Chaoquan Tang ◽  
Peng Li ◽  
Gongbo Zhou ◽  
Deyuan Meng ◽  
Xin Shu ◽  
...  

The narrow and redundant body of the snake robot makes it suitable for the inspection of complex bar structures, such as truss or tree structures. One of the key issues affecting the efficient motion of snake robots in complex bar structures is the development of mechanical models of snake robots on cylinders. In other words, the relationship between the payload and structural and performance parameters of the snake robot is still difficult to clarify. In this paper, the problem is approached with the Newton–Euler equations and the convex optimal method. Firstly, from the kinematic point of view, the optimal attitude of the snake robot wrapped around the cylinder is found. Next, the snake robot is modeled on the cylinder and transformed into a convex optimization problem. Then, the relationship between the payload of the snake robot on the cylinder and the geometric and attitude parameters of the body of snake robots is analyzed. Finally, the discussion for the optimal winding attitude and some advices for the design of the snake robot are proposed. This study is helpful toward the optimal design of snake robots, including geometry parameters and motor determination.


2019 ◽  
Vol 944 ◽  
pp. 835-840
Author(s):  
Peng Song ◽  
Zheng Long Li ◽  
Yu Ran Fan ◽  
Lei Guo ◽  
Xi Xi Zhang ◽  
...  

In order to study the pressure carrying capacity of X80 pipe with plain dents, the formation process and the hydraulic test were analyzed by finite element simulation. Based on this, the sensitivity analysis of the factors affecting the pressure carrying capacity of the pipeline, such as the internal pressure, the confinement state and the material performance, is carried out. Research results show that springback amount of the pipeline decreases due to the initial internal pressure, and constraint state has little effect on the pressure carrying capacity while increases with the increasing of the material tensile properties. When the depth of the dent is less than 6% pipe diameter or the strain of the dent is less than 6%, the dent has little impact to the pressure carrying capacity of the pipe.


2012 ◽  
Vol 594-597 ◽  
pp. 1516-1521
Author(s):  
Ling Yu ◽  
Tie Zhu Qiao ◽  
Long Sheng Bao ◽  
Guang Shan Zhu

This article simulates prestressed concrete continuous girder bridge reinforced many times and evaluates carrying capacity after reinforcement. Taking the FuFeng bridge for an example, we analyze the bridge’s stress state in using by Midas software, evaluate the concrete ability of crack resistance, check the reinforced concrete structure ultimate carrying capacity, the cracking resistance and the stiffness, assess reinforcement effect and verify the accuracy and reliability of the simulation results. The maximum main compressive stress, maximum compressive stress, maximal main tensile stress and maximum tension stress of mid-span cross-section of the bridge are 1.6Mpa, 1.6Mpa, 0.3~0.5Mpa, and -1.2Mpa respectively, the mid-span center cross-section of deflection is 2.89cm. Reinforcement suppresses the development and expansion of the crack; the mid-span deflection tends to stabilize; the ultimate bearing capacity meets the Standard requirement basically; the emergency capacity is not enough; and the car whose weight over 55 tons is prohibited from passing.


2012 ◽  
Vol 170-173 ◽  
pp. 3308-3311
Author(s):  
Ke Li ◽  
Jing Ji

In combination with a industrial plant cantilever structure need be increased for meeting the technological requirements,the three kinds of structural design schemes of cantilever are considered, that is the scheme hanging on steel frame of the plant, prestressed steel frame scheme and steel truss scheme. Three kinds of structural form and materials selection are introduced. By finite element software ANSYS three kinds of schemes are analyzed, carrying capacity and deflection of members under load are acquired, by Comparison steel truss scheme is adopted. Carrying capacity and deflection of structure not only meet requirements, but also the construction is easy. This paper provides reference for resolving similar cantileve r problems in engineering.


2011 ◽  
Vol 233-235 ◽  
pp. 2043-2046
Author(s):  
Zhong Li ◽  
Lai Bin Zhang ◽  
Fan Luo ◽  
Bai Ling Zhang ◽  
Shu Ying Tan

At present, offshore drilling operations often use buttress thread casing as surface casing. The design conception of buttress thread casing comes from the offshore drilling’s demands and this kind of casing is mainly used as surface casing. This paper has taken material mechanical experiment, numerical simulation analysis and field test, the research results show that the various parameters of buttress thread casing fully complies with the drilling design requirements and the offshore oilfield production demands. This product can reduce drilling cost effectively, improve working efficiency and safety, and realize manufacture domestically. Meanwhile, the development of this project will fill the blank of the ERW (Electrical Resistance Weld) casing in CNOOC (China National Offshore Oil Corporation), and have a broad prospect of application.


Sign in / Sign up

Export Citation Format

Share Document