Degradation Kinetic of Oxytetracycline Antibiotic inside UV Reactor in the Presence of H2O2

2014 ◽  
Vol 625 ◽  
pp. 901-906
Author(s):  
Anisa Ur Rahmah ◽  
Sabtanti Harimurti ◽  
Abdul Aziz Omar ◽  
Thanabalan Murugesan

–Oxytetracycline (OTC), a widely used of veterinary antibiotic, was degraded inside a UV/H2O2system. Kinetic study was conducted at 30°C of temperature and pH 6.37, as suggested by the previous optimization experiment. About 250, 375 and 500 ppm initial OTC concentration were used for the kinetic studies, at H2O2concentration of 0.116 M. The experimental data were plotted against the pseudo zero-th, first and second order of kinetic. Based on regression coefficient value, the data was well fitted with the pseudo first order of kinetic. The calculated value ofkobswas 0.181 min-1.

2021 ◽  
Author(s):  
khaled Mostafa ◽  
H. Ameen ◽  
A. Ebessy ◽  
A. El-Sanabary

Abstract Our recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 G.Y. % was used as a starting substrate for copper ions removal from waste water effluent after chemical modification with hydroxyl amine via oximation reaction. This was done to change the abundant nitrile groups in the above copolymer into amidoxime one and the resultant poly (amidoxime) resin was used as adsorbent for copper ions. The resin was characterized qualitatively via rapid vanadium ion test and instrumentally by FT-IR spectra and SEM morphological analysis to confirm the presence of amidoxime groups. The adsorption capacity of the resin was done using the batch technique, whereas the residual copper ions content in the filtrate before and after adsorption was measured using atomic adsorption spectrometry. It was found that the maximum adsorption capacity of poly (amidoxime) resin was 115.2 mg/g at pH 7, 400ppm copper ions concentration and 0.25 g adsorbent at room temperature. The adsorption, kinetics and isothermal study of the process is scrutinized using different variables, such as pH, contact time, copper ion concentration and adsorbent dosage. Different kinetics models comprising the pseudo-first-order and pseudo-second-order have been applied to the experimental data to envisage the adsorption kinetics. It was found from kinetic study that pseudo-second-order rate equation was better than pseudo-first-order supporting the formation of chemisorption process. While, in case of isothermal study, the examination of calculated correlation coefficient (R2) values showed that the Langmuir model provide the best fit to experimental data than Freundlich one.


1977 ◽  
Vol 55 (1) ◽  
pp. 102-110 ◽  
Author(s):  
M. B. Hocking ◽  
J. H. Ong

Rates of oxidation of aqueous o-, and p-hydroxyacetophenone with alkaline hydrogen peroxide to yield catechol and hydroquinone, respectively, have been followed spectrophotometri-cally. Both ketones showed smooth pseudo first-order behaviour, the ortho isomer yielding rate constants in the range 2.6 to 6.6 × 10−2 min−1 at 0 °C, and the para isomer of 0.73 to 7.10 × 10−2 min−1 at 35 °C for the concentrations of hydrogen peroxide and base used. The order in hydrogen peroxide was, unexpectedly, found to be 1.4. A simple test established that this fractional order was probably not the result of hydrogen peroxide involvement in simultaneous first- and second-order processes of differing rates. Other plausible pathways to explain this are proposed.


2014 ◽  
Vol 25 ◽  
pp. 6-11 ◽  
Author(s):  
R. Aathithya ◽  
J. Rajani Sowparnika ◽  
V. Balakrishnan

Biosorption is an attractive technology which is used for the sorption of substances by a biomaterial. In this present work the heavy metal chromium was subjected to biosorption because of their non-degradability nature and causes water and land pollution. Cherry leaves were used as a biomaterial for the biosorption. Kinetic studies were performed for the biosorption experiment. From the experiment it was found that the reaction follows pseudo first order reaction because of the larger value of regression coefficient R2 and lower value of standard errors (χ2) for pseudo first order reaction than second order reaction.


2013 ◽  
Vol 726-731 ◽  
pp. 2191-2197 ◽  
Author(s):  
Su Yun He ◽  
Cai Yun Han ◽  
Su Fang He ◽  
Hua Wang ◽  
Chun Xia Liu ◽  
...  

This research presented the kinetic performance of arsenic absorption by mesostructure SBA-15 functionalized with Al2O3. The SBA-15 was previously synthesised and subsequently functionalized via impregnation of alumina oxides. The absorption of arsenic(V) was studied as a function of absorbent dosage and contact time. The experimental data were fitted to kinetic pseudo-first order, pseudo-second order and the intra-particle diffusion model. The pseudo-second order model presented the best correlation with the experimental data. Both surface absorption and intra-particle diffusion were acting during arsenic uptake, except for absorbent dosage of 0.1g, which was mainly controlled by the intra-particle diffusion.


2013 ◽  
Vol 741 ◽  
pp. 55-58
Author(s):  
Wen Lian Luo

The removal of Cu2+ ions from aqueous solution was studied using pickled diatomite samples. The linear Langmuir and Freundlich adsorption equations were applied to describe the equilibrium isotherms. The pseudo-first-order and pseudo-second-order models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model.


Author(s):  
Tarald O. Kvålseth

First- and second-order linear models of mean movement time for serial arm movements aimed at a target and subject to preview constraints and lateral constraints were formulated as extensions of the so-called Fitts's law of motor control. These models were validated on the basis of experimental data from five subjects and found to explain from 80% to 85% of the variation in movement time in the case of the first-order models and from 93% to 95% of such variation for the second-order models. Fitts's index of difficulty (ID) was generally found to contribute more to the movement time than did either the preview ID or the lateral ID defined. Of the different types of errors, target overshoots occurred far more frequently than undershoots.


2001 ◽  
Vol 699 ◽  
Author(s):  
D.S. McLachlan ◽  
C. Chiteme ◽  
W.D. Heiss ◽  
Junjie Wu

AbstractThe standard percolation equations or power laws, for dc and ac conductivity (dielectric constant) are based on scaling ansatz, and predict the behaviour of the first and second order terms, above and below the percolation or critical volume fraction (øc), and in the crossoverregion. Recent experimental results on ac conductivity are presented, which show that these equations, with the exception of real σm above øc and the first order terms in the crossover region, are only valid in the limit σi/σc = 0, where for an ideal dielectric σi=ωε0εr.A single analytical equation, which has the same parameters as the standard percolation equations, and which, for ac conductivity, reduces to the standard percolation power laws in the limit σi(ωε0εr)/σc = 0 for all but one case, is presented. The exception is the expression for real σm below øc, where the standard power law is always incorrect. The equation is then shown to quantitatively fit both first and second order dc and ac experimental data over the entire frequency and composition range. This phenomenological equation is also continuous, has the scaling properties required at a second order metal-insulator and fits scaled first order dc and ac experimental data. Unfortunately, the s and t exponents that are necessary to fit the data to the above analytical equation are usually not the simple dimensionally determined universal ones and depend on a number of factors.


2019 ◽  
Vol 79 (6) ◽  
pp. 1134-1143 ◽  
Author(s):  
Ada Azevedo Barbosa ◽  
Ramon Vinicius Santos de Aquino ◽  
Naiana Santos da Cruz Santana Neves ◽  
Renato Falcão Dantas ◽  
Marta Maria Menezes Bezerra Duarte ◽  
...  

Abstract This work investigated the efficiency of polyethylene terephthalate (PET) as support material for TiO2 films in the photocatalytic degradation of red Bordeaux and yellow tartrazine dyes. The optimum operating conditions were determined by a factorial design, which resulted after 180 min of treatment in degradations of 99.5% and 99.1% for the UVC/H2O2/TiO2Sup and solar/H2O2/TiO2Sup systems, respectively. For the kinetic study, the experimental data fitted to the pseudo-first-order model and the calculated kinetic constants (k) values were 0.03 min−1 for the UVC/H2O2/TiO2Sup system and 0.0213 min−1 for the system solar/H2O2/TiO2Sup. It was verified that TiO2 supported in the PET remained with high degradation efficiency even after five cycles of reuse, indicating a good stability of the photocatalyst in the support. A significant reduction of TOC content was also observed along the reaction time. The phytotoxicity bioassay with Lactuca sativa demonstrated that after treatment with UVC/H2O2/TiO2Sup and solar/H2O2/TiO2SUP, an increase in IC50 and consequently lower toxicity was observed.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


Sign in / Sign up

Export Citation Format

Share Document