Low Cost Device for Experimental Tests of Electrorheological Fluids

2014 ◽  
Vol 658 ◽  
pp. 575-580
Author(s):  
Beniamin Vasile Chetran ◽  
Dan Mândru

Electrorheological fluids (ERFs) can change their shear stress and shear rate as a function of the electric field intensity thus, such fluids acts as Newtonian fluids, if no electric field is applied and, become non Newtonian fluids if the presence of an electric field. In the last years, a growth interest is manifested for incorporating smart fluids into structures, as clutches or dumpers. The ERFs shear rate and shear stress must be determined at the moment of designing such mechanical structures. The fluids viscosity is studied by aid of commercially available viscosimeters or rheometers, these do not have the possibility to apply an electric field to the studied fluids. The ER fluids must be studied into specific electric field intensity. This paper presents: a low cost experimental rheometer and experimental results obtained form a study of several commercially available ERFs.

2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 695-703 ◽  
Author(s):  
S. L. VIEIRA ◽  
M. NAKANO ◽  
S. HENLEY ◽  
F. E. FILISKO ◽  
L. B. POMPEO NETO ◽  
...  

It was reported that under the simultaneous stimulus of an electric field and shear, the particles in an ER fluid form lamellar formations in the direction of shear (adhered to one of the electrodes) which may be responsible for the ER activity more than the strength of the chains. In this way, it would be expected that the shear stress should change consistently with the morphology of the formations. In this work we studied the effect of shearing time, electric field strength and shear rate on the shear stress. We suggest that changes on shear stress with time are due to changes of the morphology of the lamellar formations.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6029-6036 ◽  
Author(s):  
X. W. ZHANG ◽  
C. B. ZHANG ◽  
T. X. YU ◽  
W. J. WEN

Electro-rheological (ER) fluid is a smart suspension which can be changed promptly from Newtonian to Bingham plastic material when subjected to a high-intensity electric field. This property of ER fluid makes it possible to be applied in adaptive energy absorbers. As the impact velocity encountered in applications could be very large, it is necessary to characterize the ERF under high shear rate. In this study, a capillary rheo-meter with parallel duct was designed and manufactured which is capable of producing a shear rate as high as 5000(1/s). Two giant ER fluids with mass concentration C = 51% and 44.5% and a commercial density-matched ER fluid with C = 37.5% were characterized. The experimental results show that when the ER fluids are free of electric field (E = 0 kV / mm ), they are Newtonian. However, for the former two ER fluids, the deposition effect is very remarkable and stirring has to be made continuously to keep the suspension stable. With the increase of the electric field intensity, the yield shear stresses of ER fluids increase exponentially but their viscosities do not change much. It is also found that within the parallel duct, the flow of ER fluids exhibits notable fluctuations, whose period increases with the increase of electric field intensity and is independent of the shear rate.


Author(s):  
M. Rizwan Malik ◽  
Tie Lin Shi ◽  
Zi Rong Tang

A dielectrophoretic approach with latest developed three-dimensional (3-D) carbon micro-electro-mechanical system (C-MEMS) has been extended as a potential route with idyllic solution to recommend a low-cost, biocompatible and high throughput manipulation and positioning for bio-particles as compared to 2D-planar microelectrodes. Presented in this paper is a novel platform for modelling and simulation of C-MEMS microfabrication process for dielectrophoresis (DEP) force based on various 3-D offset-microelectrode configurations. Numerical solutions are employed to investigate the upshots of multi-designed microelectrodes, applied voltage, electrode edge-to-edge gap and geometric size of microelectrodes on the electric field intensity gradient, induced by an AC voltage for the deployment of broad categories of bioparticles creation, utilization and their manipulation (separation, concentration, transportation and focusing). Sharp edge electrodes are the principle focus of this paper for DEP manipulation that is more convenient to enhance the electric field intensity distribution. The results show that square column electrodes configuration comparatively create large gradient magnitude in electric field intensity as compared to all other configurations. It is also observed that electric field extends drastically with increases in microelectrode height. These findings are consistent with literature experimental reports and will provide vital strategy for optimal design of DEP devices with 3-D C-MEMS.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1157
Author(s):  
Yong Liu ◽  
Xingwang Huang

Ceramic outdoor insulators play an important role in electrical insulation and mechanical support because of good chemical and thermal stability, which have been widely used in power systems. However, the brittleness and surface discharge of ceramic material greatly limit the application of ceramic insulators. From the perspective of sintering technology, flash sintering technology is used to improve the performance of ceramic insulators. In this paper, the simulation model of producing the ceramic insulator by the flash sintering technology was set up. Material Studio was used to study the influence of electric field intensity and temperature on the alumina unit cell. COMSOL was used to study the influence of electric field intensity and current density on sintering speed, density and grain size. Obtained results showed that under high temperature and high voltage, the volume of the unit cell becomes smaller and the atoms are arranged more closely. The increase of current density can result in higher ceramic density and larger grain size. With the electric field intensity increasing, incubation time shows a decreasing tendency and energy consumption is reduced. Ceramic insulators with a higher uniform structure and a smaller grain size can show better dielectric performance and higher flashover voltage.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1419
Author(s):  
Toshio Sugaya ◽  
Yukio Kawano

Terahertz waves are located in the frequency band between radio waves and light, and they are being considered for various applications as a light source. Generally, the use of light requires focusing; however, when a terahertz wave is irradiated onto a small detector or a small measurement sample, its wavelength, which is much longer than that of visible light, causes problems. The diffraction limit may make it impossible to focus the terahertz light down to the desired range by using common lenses. The Bull’s Eye structure, which is a plasmonic structure, is a promising tool for focusing the terahertz light beyond the diffraction limit and into the sub-wavelength region. By utilizing the surface plasmon propagation, the electric field intensity and transmission coefficient can be enhanced. In this study, we improved the electric field intensity and light focusing in a small region by adapting the solid immersion method (SIM) from our previous study, which had a frequency-tunable nonconcentric Bull’s Eye structure. Through electromagnetic field analysis, the electric field intensity was confirmed to be approximately 20 times higher than that of the case without the SIM, and the transmission measurements confirmed that the transmission through an aperture had a gap of 1/20 that of the wavelength. This fabricated device can be used in imaging and sensing applications because of the close contact between the transmission aperture and the measurement sample.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Bing Wei ◽  
Le Cao ◽  
Fei Wang ◽  
Qian Yang

According to the characteristics of the polarizability in frequency domain of three common models of dispersive media, the relation between the polarization vector and electric field intensity is converted into a time domain differential equation of second order with the polarization vector by using the conversion from frequency to time domain. Newmarkβγdifference method is employed to solve this equation. The electric field intensity to polarizability recursion is derived, and the electric flux to electric field intensity recursion is obtained by constitutive relation. Then FDTD iterative computation in time domain of electric and magnetic field components in dispersive medium is completed. By analyzing the solution stability of the above differential equation using central difference method, it is proved that this method has more advantages in the selection of time step. Theoretical analyses and numerical results demonstrate that this method is a general algorithm and it has advantages of higher accuracy and stability over the algorithms based on central difference method.


Sign in / Sign up

Export Citation Format

Share Document